Objective: Late-onset cerebellar ataxia (LOCA) is a slowly progressive cerebellar disorder with symptom onset ≥30years of age. Intronic tandem repeat expansions (TREs) in RFC1 and FGF14 have recently emerged as common causes of LOCA. The relative contribution of classic vs.
View Article and Find Full Text PDFObjectives: To report a novel imaging finding of bilateral dentate nuclei hyperintensities in a case of childhood-onset GAA--related ataxia (spinocerebellar ataxia 27B, SCA27B) and response to 4-aminopyridine (4-AP).
Methods: A 53-year-old woman with unsolved progressive cerebellar ataxia of childhood onset underwent clinical and imaging assessment and extensive genetic investigation.
Results: After excluding Friedreich ataxia, most common spinocerebellar ataxia-related expansions, and pathogenic variants in ataxia-related genes through exome sequencing, targeted long-range PCR and repeat-primed PCR analysis revealed a heterozygous pathogenic (GAA) expansion in Brain MRI showed bilateral dentate nuclei hyperintensities and peridentate white matter degeneration, a feature never reported before in SCA27B.
Objectives: Spinocerebellar ataxia 27B due to GAA repeat expansions in the fibroblast growth factor 14 (FGF14) gene has recently been recognized as a common cause of late-onset hereditary cerebellar ataxia. Here we present the first report of this disease in the US population, characterizing its clinical manifestations, disease progression, pathological abnormalities, and response to 4-aminopyridine in a cohort of 102 patients bearing GAA repeat expansions.
Methods: We compiled a series of patients with SCA27B, recruited from 5 academic centers across the United States.
Background: GAA-FGF14 disease/spinocerebellar ataxia 27B is a recently described neurodegenerative disease caused by (GAA) expansions in the fibroblast growth factor 14 (FGF14) gene, but its phenotypic spectrum, pathogenic threshold, and evidence-based treatability remain to be established. We report on the frequency of FGF14 (GAA) and (GAA) expansions in a large cohort of patients with idiopathic downbeat nystagmus (DBN) and their response to 4-aminopyridine.
Methods: Retrospective cohort study of 170 patients with idiopathic DBN, comprising in-depth phenotyping and assessment of 4-aminopyridine treatment response, including re-analysis of placebo-controlled video-oculography treatment response data from a previous randomised double-blind 4-aminopyridine trial.
Background: GAA- ataxia (SCA27B) is a recently reported late-onset ataxia caused by a GAA repeat expansion in intron 1 of the gene. Initial studies revealed cerebellar atrophy in 74-97% of patients. A more detailed brain imaging characterization of GAA- ataxia is now needed to provide supportive diagnostic features and earlier disease recognition.
View Article and Find Full Text PDFA pathogenic GAA repeat expansion in the first intron of the fibroblast growth factor 14 gene (FGF14) has been recently identified as the cause of spinocerebellar ataxia 27B (SCA27B). We herein screened 160 Greek index cases with late-onset cerebellar ataxia (LOCA) for FGF14 repeat expansions using a combination of long-range PCR and bidirectional repeat-primed PCRs. We identified 19 index cases (12%) carrying a pathogenic FGF14 GAA expansion, a diagnostic yield higher than that of previously screened repeat-expansion ataxias in Greek LOCA patients.
View Article and Find Full Text PDFObjectives: Intronic GAA repeat expansions have recently been found to be a common cause of hereditary ataxia (GAA- ataxia; SCA27B). The global epidemiology and regional prevalence of this newly reported disorder remain to be established. In this study, we investigated the frequency of GAA- ataxia in a large cohort of Brazilian patients with unsolved adult-onset ataxia.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
January 2024
Dominantly inherited GAA repeat expansions in FGF14 are a common cause of spinocerebellar ataxia (GAA-FGF14 ataxia; spinocerebellar ataxia 27B). Molecular confirmation of FGF14 GAA repeat expansions has thus far mostly relied on long-read sequencing, a technology that is not yet widely available in clinical laboratories. We developed and validated a strategy to detect FGF14 GAA repeat expansions using long-range PCR, bidirectional repeat-primed PCRs, and Sanger sequencing.
View Article and Find Full Text PDFAtaxia due to an autosomal dominant intronic GAA repeat expansion in FGF14 [GAA-FGF14 ataxia, spinocerebellar ataxia 27B (SCA27B)] has recently been identified as one of the most common genetic late-onset ataxias. We here aimed to characterize its phenotypic profile, natural history progression, and 4-aminopyridine (4-AP) treatment response. We conducted a multi-modal cohort study of 50 GAA-FGF14 patients, comprising in-depth phenotyping, cross-sectional and longitudinal progression data (up to 7 years), MRI findings, serum neurofilament light (sNfL) levels, neuropathology, and 4-AP treatment response data, including a series of n-of-1 treatment studies.
View Article and Find Full Text PDFAutosomal Recessive Spastic Ataxia of the Charlevoix Saguenay (ARSACS) is caused by mutation in the SACS gene resulting in loss of function of the protein sacsin. A key feature is the formation of abnormal bundles of neurofilaments (NF) in neurons and vimentin intermediate filaments (IF) in cultured fibroblasts, suggesting a role of sacsin in IF homeostasis. Sacsin contains a J domain (SacsJ) homologous to Hsp40, that can interact with Hsp70 chaperones.
View Article and Find Full Text PDFGlycogen storage diseases (GSDs) result from the deficiency of enzymes involved in glycogen synthesis and breakdown into glucose. Mutations in the gene PHKA2 encoding phosphorylase kinase regulatory subunit alpha 2 have been linked to GSD type IXa. We describe a family with two adult brothers with neonatal hepatosplenomegaly and later onset of hearing loss, cognitive impairment, and cerebellar involvement.
View Article and Find Full Text PDFObjective: Recessive null variants of the slow skeletal muscle troponin T1 (TNNT1) gene are a rare cause of nemaline myopathy that is fatal in infancy due to respiratory insufficiency. Muscle biopsy shows rods and fiber type disproportion. We report on 4 French Canadians with a novel form of recessive congenital TNNT1 core-rod myopathy.
View Article and Find Full Text PDF