Publications by authors named "Dibyendu Bandyopadhyay"

Atomistic molecular dynamics simulations have been employed to study the self-ion (H and OH) distribution at the interface between long-chain C-OH alcohol (cetyl alcohol) monolayer and water. It is well known that the free air-water interface is acidic due to accumulation of the hydronium (HO) ions at the interface. In the present study, we have observed that contrary to the air-water interface, at the long-chain alcohol monolayer-water interface, it is the hydroxide (OH) ion, not the hydronium ion (HO) that gets accumulated.

View Article and Find Full Text PDF

Aim: Cutaneous abscesses are one of the most common acute general surgery presentations. This study aimed to understand the current practice in the management of cutaneous abscesses in the United Kingdom (UK), once the decision has been made that acute surgical incision and drainage (I&D) is required.

Method: General surgeons from across the UK were surveyed on their opinions on the optimum management of cutaneous abscesses.

View Article and Find Full Text PDF

Atomistic molecular dynamics simulations have been used to investigate differences in the characteristics of the aqueous solutions of two structurally similar, biologically important molecules, namely, tert-butyl alcohol (TBA) and trimethylamine- N-oxide (TMAO). By analyzing radial distribution functions, preferential solvation factors, and the number of nearest neighbors, structural characteristics of the two aqueous solutions are found to be dramatically different. By examining the distribution of nearest neighbor solute and solvent molecules in these two solutions, it is found that the aqueous solution of TMAO is homogeneous, whereas that of TBA is not.

View Article and Find Full Text PDF

Accurate description of solvation structure of a hydrophobic nanomaterial is of immense importance to understand protein folding, molecular recognition, drug binding, and many related phenomena. Moreover, spontaneous pattern formation through self-organization of solvent molecules around a nanoscopic solute is fascinating and useful in making template-directed nanostructures of desired morphologies. Recently, it has been shown using polarizable atomistic models that the hydration shell of a buckminsterfullerene can have atomically resolved ordered structure, in which C atomic arrangement is imprinted.

View Article and Find Full Text PDF

Fluorescence anisotropy measurements and molecular dynamics (MD) simulations have been performed to understand the specific interactions of two structurally similar nondipolar solutes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and 1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP), with neat 1-butyl-3-methylimidazolium dicyanamide ([BMIM][N(CN)]) and also in the presence of glucose. It has been observed that the measured reorientation times of DMDPP in neat [BMIM][N(CN)] follow the predictions of the Stokes-Einstein-Debye hydrodynamic theory with slip boundary condition. Addition of glucose (0.

View Article and Find Full Text PDF

Like-charge ion-pair formation in an aqueous solution of guanidinium chloride (GdmCl) has two important facets. On one hand, it describes the role of the arginine (ARG) side chain in aggregation and dimer formation in proteins, and on the other hand, it lends support for the direct mechanism of protein denaturation by GdmCl. We employ all-atom molecular dynamics simulations to investigate the effect of GdmCl concentration on the like-charge ion-pair formation of guanidinium ions (Gdm(+)).

View Article and Find Full Text PDF

An aqueous solution of urea is a very important mixture of biological relevance because of the definitive role of urea as protein denaturant at high concentrations. There has been an extended debate over the years on urea's influence on the structure of water. On the basis of a variety of analysis methods employed, urea has been described as a structure-breaker, a structure-maker, or as neutral toward water structure.

View Article and Find Full Text PDF

We use extensive molecular dynamics simulations employing different state-of-the-art force fields to find a common framework for comparing structural orders and density anomalies as obtained from different water models. It is found that the average number of hydrogen bonds correlates well with various order parameters as well as the temperature of maximum densities across the different models, unifying apparently disparate results from different models and emphasizing the importance of hydrogen bonding in determining anomalous properties and the structure of water. A deeper insight into the hydrogen bond network of water reveals that the solvation shell of a water molecule can be defined by considering only those neighbors that are hydrogen-bonded to it.

View Article and Find Full Text PDF

We use molecular dynamics (MD) simulations of water near nanoscopic surfaces to characterize hydrophobic solute-water interfaces. By using nanoscopic paraffin like plates as model solutes, MD simulations in isothermal-isobaric ensemble have been employed to identify characteristic features of such an interface. Enhanced water correlation, density fluctuations, and position dependent compressibility apart from surface specific hydrogen bond distribution and molecular orientations have been identified as characteristic features of such interfaces.

View Article and Find Full Text PDF

Spontaneous biloma is an uncommon entity. We report a case of subcapsular biloma in an elderly patient with a nonobstructed biliary channel, without prior history of surgery, instrumentation, or trauma. Computed tomography (CT) and magnetic resonance imaging are described.

View Article and Find Full Text PDF