Identifying biological factors which contribute to the clinical progression of heterogeneous motor and non-motor phenotypes in Parkinson's disease may help to better understand the disease process. Several lipid-related genetic risk factors for Parkinson's disease have been identified, and the serum lipid signature of Parkinson's disease patients is significantly distinguishable from controls. However, the extent to which lipid profiles are associated with clinical outcomes remains unclear.
View Article and Find Full Text PDFBackground: DNA methylation is a critical molecular mark involved in cellular differentiation and cell-specific processes. Single-cell whole genome DNA methylation profiling methods hold great potential to resolve the DNA methylation profiles of individual cell-types. Here we present a method that couples single-cell combinatorial indexing (sci) with enzymatic conversion (sciEM) of unmethylated cytosines.
View Article and Find Full Text PDFLeucine-rich-repeat kinase 2 (LRRK2), a potential therapeutic target for the treatment of Parkinson's disease (PD), is highly expressed in monocytes and macrophages and may play a role in the regulation of inflammatory pathways. To determine how LRRK2 protein levels and/or its activity modulate inflammatory cytokine/chemokine levels in human immune cells, isogenic human induced pluripotent stem cells (iPSC) with the LRRK2-activating G2019S mutation, wild-type LRRK2, and iPSC deficient in LRRK2 were differentiated to monocytes and macrophages and stimulated with inflammatory toll-like receptor (TLR) agonists in the presence and absence of LRRK2 kinase inhibitors. The effect of LRRK2 inhibitors and the effect of increasing LRRK2 levels with interferon gamma on TLR-stimulated cytokines were also assessed in primary peripheral blood-derived monocytes.
View Article and Find Full Text PDFFor more than a decade, researchers have sought to uncover the biological function of the enigmatic leucine rich repeat kinase 2 (LRRK2) enzyme, a large multi-domain protein with dual GTPase and kinase activities. Originally identified as a familial Parkinson's disease (PD) risk gene, variations in LRRK2 are also associated with risk of idiopathic PD, inflammatory bowel disease and susceptibility to bacterial infections. LRRK2 is highly expressed in peripheral immune cells and the potential of LRRK2 to regulate immune and inflammatory pathways has emerged as common link across LRRK2-implicated diseases.
View Article and Find Full Text PDFThe heterogeneous nature of Parkinson's disease (PD) symptoms and variability in their progression complicates patient treatment and interpretation of clinical trials. Consequently, there is much interest in developing models that can predict PD progression. In this study we have used serum samples from a clinically well characterized longitudinally followed Michael J Fox Foundation cohort of PD patients with and without the common leucine-rich repeat kinase 2 (LRRK2) G2019S mutation.
View Article and Find Full Text PDFThe human Y chromosome has an inevitable role in male fertility because it contains many genes critical for spermatogenesis and the development of the male gonads. Any genetic variation or epigenetic modification affecting the expression pattern of Y chromosome genes may thus lead to male infertility. In this study, we performed isoform-level gene expression profiling of Y chromosome genes within the azoospermia factor (AZF) regions, their X chromosome counterparts, and few autosomal paralogues in testicular biopsies of 12 men with preserved spermatogenesis and 68 men with nonobstructive azoospermia (NOA) (40 Sertoli-cell-only syndrome (SCOS) and 28 premiotic maturation arrest (MA)).
View Article and Find Full Text PDFThe Chromosome-centric Human Proteome Project (C-HPP) aims to systematically map the entire human proteome with the intent to enhance our understanding of human biology at the cellular level. This project attempts simultaneously to establish a sound basis for the development of diagnostic, prognostic, therapeutic, and preventive medical applications. In Iran, current efforts focus on mapping the proteome of the human Y chromosome.
View Article and Find Full Text PDF