Publications by authors named "Diaz-Moreno I"

Background And Aims: Alcohol-associated liver disease (ALD) is a leading cause of liver-related mortality worldwide, with limited treatment options beyond abstinence and liver transplantation. Chronic alcohol consumption has been linked to magnesium (Mg 2+ ) deficiency, which can influence liver disease progression. The mechanisms underlying Mg 2+ homeostasis dysregulation in ALD remain elusive.

View Article and Find Full Text PDF

The 23rd FEBS YSF was held from 26th to 29th June 2024 in Pavia, Italy. Over 100 PhD students and early postdoctoral researchers from around 30 different countries came together at the inspiring rooms of the University of Pavia for a four-day event. This year's topic was 'Biochemistry for bridging the gap', meaning the opportunity to have a comprehensive perspective on all biochemistry applications.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) of proteins are ubiquitous processes present in all life kingdoms, involved in the regulation of protein stability, subcellular location and activity. In this context, cytochrome c (Cc) is an excellent case study to analyze the structural and functional changes induced by PTMS as Cc is a small, moonlighting protein playing different roles in different cell compartments at different cell-cycle stages. Cc is actually a key component of the mitochondrial electron transport chain (ETC) under homeostatic conditions but is translocated to the cytoplasm and even the nucleus under apoptotic conditions and/or DNA damage.

View Article and Find Full Text PDF

Minimally invasive cardiac valve replacement surgery (MICS) is a technique that has reported equivalent rates of mortality and reintervention when compared to conventional median sternotomy (CS). Additionally, MICS has inconsistently been reported to be associated with fewer postoperative complications, better cosmetic outcomes, and shorter hospital stays at the expense of longer surgical time, aortic clamp time, and extracorporeal circulation time. When comparing populations undergoing MICS vs CS at the Ignacio Chávez National Institute of Cardiology (INCICh), it was proven that there is a longer surgical, extracorporeal circulation, and aortic clamp durations in the MICS intervention, but no statistically significant difference in global mortality.

View Article and Find Full Text PDF

Compartmentalization of proteins by liquid-liquid phase separation (LLPS) is used by cells to control biochemical reactions spatially and temporally. Among them, the recruitment of proteins to DNA foci and nucleolar trafficking occur by biomolecular condensation. Within this frame, the oncoprotein SET/TAF-Iβ plays a key role in both chromatin remodeling and DNA damage response, as does nucleophosmin (NPM1) which indeed participates in nucleolar ribosome synthesis.

View Article and Find Full Text PDF

Human antigen R (HuR) is an RNA binding protein mainly involved in maintaining the stability and controlling the translation of mRNAs, critical for immune response, cell survival, proliferation and apoptosis. Although HuR is a nuclear protein, its mRNA translational-related function occurs at the cytoplasm, where the oligomeric form of HuR is more abundant. However, the regulation of nucleo-cytoplasmic transport of HuR and its connection with protein oligomerization remain unclear.

View Article and Find Full Text PDF

The coordination of enzymes and regulatory proteins for eukaryotic DNA replication and repair is largely achieved by Proliferating Cell Nuclear Antigen (PCNA), a toroidal homotrimeric protein that embraces the DNA duplex. Many proteins bind PCNA through a conserved sequence known as the PCNA interacting protein motif (PIP). PCNA is further regulated by different post-translational modifications.

View Article and Find Full Text PDF

The human microbiota plays an important role in human health and disease, through the secretion of metabolites that regulate key biological functions. We propose that microbiota metabolites represent an unexplored chemical space of small drug-like molecules in the search of new hits for drug discovery. Here, we describe the generation of a set of complex chemotypes inspired on selected microbiota metabolites, which have been synthesized using asymmetric organocatalytic reactions.

View Article and Find Full Text PDF

The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum.

View Article and Find Full Text PDF

T-cell intracellular antigen-1 (TIA-1) is a key RNA-binding protein that participates in translation regulation and RNA splicing. TIA-1 undergoes liquid-liquid phase separation as a fundamental mechanism that enables the condensation of RNA and proteins into membraneless organelles called stress granules (SGs). However, this dynamic behavior can lead to aberrant fibril formation, implicated in neurodegenerative disorders, and must be tightly regulated.

View Article and Find Full Text PDF

Chromatin homeostasis mediates essential processes in eukaryotes, where histone chaperones have emerged as major regulatory factors during DNA replication, repair, and transcription. The dynamic nature of these processes, however, has severely impeded their characterization at the molecular level. Here, fluorescence optical tweezers are applied to follow histone chaperone dynamics in real time.

View Article and Find Full Text PDF
Article Synopsis
  • Neddylation is a process that involves adding a protein called NEDD8, which affects various cellular functions, and is influenced by nutrient levels in the liver of mice.
  • Inhibiting neddylation hampers the liver's ability to produce glucose and respond to hormones that increase blood sugar levels, and people with type 2 diabetes have higher levels of neddylation in their livers.
  • Specifically, fasting or reducing calorie intake leads to neddylation of a key enzyme (PCK1), and modifying certain sites on this enzyme decreases its activity, indicating that neddylation plays a crucial role in regulating glucose metabolism based on nutrient availability.
View Article and Find Full Text PDF

Skeletal muscle is more resilient to ischemia-reperfusion injury than other organs. Tissue specific post-translational modifications of cytochrome c (Cytc) are involved in ischemia-reperfusion injury by regulating mitochondrial respiration and apoptosis. Here, we describe an acetylation site of Cytc, lysine 39 (K39), which was mapped in ischemic porcine skeletal muscle and removed by sirtuin5 in vitro.

View Article and Find Full Text PDF

Obesity is associated with adipose tissue dysfunction through the differentiation and expansion of pre-adipocytes to adipocytes (hyperplasia) and/or increases in size of pre-existing adipocytes (hypertrophy). A cascade of transcriptional events coordinates the differentiation of pre-adipocytes into fully differentiated adipocytes; the process of adipogenesis. Although nicotinamide N-methyltransferase (NNMT) has been associated with obesity, how NNMT is regulated during adipogenesis, and the underlying regulatory mechanisms, remain undefined.

View Article and Find Full Text PDF

It has been recently shown that electron transfer between mitochondrial cytochrome c and the cytochrome c subunit of the cytochrome bc can proceed at long-distance through the aqueous solution. Cytochrome c is thought to adjust its activity by changing the affinity for its partners via Tyr48 phosphorylation, but it is unknown how it impacts the nanoscopic environment, interaction forces, and long-range electron transfer. Here, we constrain the orientation and separation between cytochrome c and cytochrome c or the phosphomimetic Y48pCMF cytochrome c, and deploy an array of single-molecule, bulk, and computational methods to investigate the molecular mechanism of electron transfer regulation by cytochrome c phosphorylation.

View Article and Find Full Text PDF

The regular functioning of the nucleolus and nucleus-mitochondria crosstalk are considered unrelated processes, yet cytochrome c (Cc) migrates to the nucleus and even the nucleolus under stress conditions. Nucleolar liquid-liquid phase separation usually serves the cell as a fast, smart mechanism to control the spatial localization and trafficking of nuclear proteins. Actually, the alternative reading frame (ARF), a tumor suppressor protein sequestered by nucleophosmin (NPM) in the nucleoli, is shifted out from NPM upon DNA damage.

View Article and Find Full Text PDF

Few genome-wide association studies (GWAS) analyzing genetic regulation of morphological traits of white blood cells have been reported. We carried out a GWAS of 12 morphological traits in 869 individuals from the general population of Sardinia, Italy. These traits, included measures of cell volume, conductivity and light scatter in four white-cell populations (eosinophils, lymphocytes, monocytes, neutrophils).

View Article and Find Full Text PDF

Stress granules are non-membrane bound RNA-protein granules essential for survival during acute cellular stress. TIA-1 is a key protein in the formation of stress granules that undergoes liquid-liquid phase separation by association with specific RNAs and protein-protein interactions. However, the fundamental properties of the TIA-1 protein that enable phase-separation also render TIA-1 susceptible to the formation of irreversible fibrillar aggregates.

View Article and Find Full Text PDF

Intrinsic protein flexibility is of overwhelming relevance for intermolecular recognition and adaptability of highly dynamic ensemble of complexes, and the phenomenon is essential for the understanding of numerous biological processes. These conformational ensembles-encounter complexes-lack a unique organization, which prevents the determination of well-defined high resolution structures. This is the case for complexes involving the oncoprotein SET/template-activating factor-Iβ (SET/TAF-Iβ), a histone chaperone whose functions and interactions are significantly affected by its intrinsic structural plasticity.

View Article and Find Full Text PDF

Hu antigen R (HuR) is a 36-kDa ubiquitous member of the ELAV/Hu family of RNA-binding proteins (RBPs), which plays an important role as a post-transcriptional regulator of specific RNAs under physiological and pathological conditions, including cancer. Herein, we review HuR protein structure, function, and its regulation, as well as its implications in the pathogenesis, progression, and treatment of hepatobiliary cancers. In particular, we focus on hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), tumors where the increased cytoplasmic localization of HuR and activity are proposed, as valuable diagnostic and prognostic markers.

View Article and Find Full Text PDF

Post-translational modifications and naturally occurring mutations of cytochrome c have been recognized as a regulatory mechanism to control its biology. In this work, we investigate the effect of such in vivo chemical modifications of human cytochrome c on its redox properties in the adsorbed state onto an electrode. In particular, tyrosines 48 and 97 have been replaced by the non-canonical amino acid p-carboxymethyl-L-phenylalanine (pCMF), thus mimicking tyrosine phosphorylation.

View Article and Find Full Text PDF

More than 50 years have passed since Nobel laureate Cristian de Duve described for the first time the presence of tiny subcellular compartments filled with hydrolytic enzymes: the lysosome. For a long time, lysosomes were deemed simple waste bags exerting a plethora of hydrolytic activities involved in the recycling of biopolymers, and lysosomal genes were considered to just be simple housekeeping genes, transcribed in a constitutive fashion. However, lysosomes are emerging as multifunctional signalling hubs involved in multiple aspects of cell biology, both under homeostatic and pathological conditions.

View Article and Find Full Text PDF