Publications by authors named "Diata Traore"

Using GPU-accelerated state-vector emulation, we propose to embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections to obtain quantitative quantum-chemistry results on molecules that would otherwise require brute-force quantum calculations using hundreds of logical qubits. Indeed, accessing a quantitative description of chemical systems while minimizing quantum resources is an essential challenge given the limited qubit capabilities of current quantum processors. We provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit through coupling the density-based basis-set corrections approach, applied to any given variational ansatz, to an on-the-fly crafting of basis sets specifically adapted to a given system and user-defined qubit budget.

View Article and Find Full Text PDF

We present the first application to real molecular systems of the recently proposed linear-response theory for the density-based basis-set correction method [, , 234107 (2023)]. We apply this approach to accelerate the basis-set convergence of excitation energies in the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) method. We use an approximate linear-response framework that neglects the second-order derivative of the basis-set correction density functional and consists in simply adding to the usual Hamiltonian the one-electron potential generated by the first-order derivative of the functional.

View Article and Find Full Text PDF

The basis-set correction method based on density-functional theory consists in correcting the energy calculated by a wave-function method with a given basis set by a density functional. This basis-set correction density functional incorporates the short-range electron correlation effects missing in the basis set. This results in accelerated basis convergences of ground-state energies to the complete-basis-set limit.

View Article and Find Full Text PDF

The present work proposes an approach to obtain a basis-set correction based on density-functional theory (DFT) for the computation of molecular properties in wave-function theory (WFT). This approach allows one to accelerate the basis-set convergence of any energy derivative of a non-variational WFT method, generalizing previous works on the DFT-based basis-set correction where either only ground-state energies could be computed with non-variational wave functions [Loos et al., J.

View Article and Find Full Text PDF

We re-examine the recently introduced basis-set correction theory based on density-functional theory, which consists of correcting the basis-set incompleteness error of wave-function methods using a density functional. We use a one-dimensional model Hamiltonian with delta-potential interactions, which has the advantage of making easier to perform a more systematic analysis than for three-dimensional Coulombic systems while keeping the essence of the slow basis convergence problem of wave-function methods. We provide some mathematical details about the theory and propose a new variant of basis-set correction, which has the advantage of being suited to the development of an adapted local-density approximation.

View Article and Find Full Text PDF

This work provides a self-consistent extension of the recently proposed density-based basis-set correction method for wave function electronic-structure calculations [E. Giner et al., J.

View Article and Find Full Text PDF