Publications by authors named "Diarmuid S O'Maoileidigh"

Photosynthesis is an essential process in plants that synthesizes sugars used for growth and development, highlighting the importance of establishing robust methods to monitor photosynthetic activity. Infrared gas analysis (IRGA) can be used to track photosynthetic rates by measuring plant CO assimilation and release. Although much progress has been made in the development of IRGA technologies, challenges remain when using this technique on small herbaceous plants such as Arabidopsis thaliana.

View Article and Find Full Text PDF

In Arabidopsis thaliana, stomata are composed of two guard cells that control the aperture of a central pore to facilitate gas exchange between the plant and its environment, which is particularly important during photosynthesis. Although leaves are the primary photosynthetic organs of flowering plants, floral organs are also photosynthetically active. In the Brassicaceae, evidence suggests that silique photosynthesis is important for optimal seed oil content.

View Article and Find Full Text PDF

This article comments on: 2022. Genetic and multi-omics analyses reveal as the key gene conferring anthocyanin-based color in flowers. Journal of Experimental Botany 6630–6645.

View Article and Find Full Text PDF

The APETALA2 (AP2) transcription factor regulates flower development, floral transition and shoot apical meristem (SAM) maintenance in Arabidopsis. AP2 is also regulated at the post-transcriptional level by microRNA172 (miR172), but the contribution of this to SAM maintenance is poorly understood. We generated transgenic plants carrying a form of AP2 that is resistant to miR172 (rAP2) or carrying a wild-type AP2 susceptible to miR172.

View Article and Find Full Text PDF

In the model plant , the zinc-finger transcription factor KNUCKLES (KNU) plays an important role in the termination of floral meristem activity, a process that is crucial for preventing the overgrowth of flowers. The gene is activated in floral meristems by the floral organ identity factor AGAMOUS (AG), and it has been shown that both AG and KNU act in floral meristem control by directly repressing the stem cell regulator (), which leads to a loss of stem cell activity. When we re-examined the expression pattern of in floral meristems, we found that is expressed throughout the center of floral meristems, which includes, but is considerably broader than the expression domain.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play important roles in regulating flowering and reproduction of angiosperms. Mature miRNAs are encoded by multiple MIRNA genes that can differ in their spatiotemporal activities and their contributions to gene regulatory networks, but the functions of individual MIRNA genes are poorly defined. We functionally analyzed the activity of all 5 Arabidopsis thaliana MIR172 genes, which encode miR172 and promote the floral transition by inhibiting the accumulation of APETALA2 (AP2) and APETALA2-LIKE (AP2-LIKE) transcription factors (TFs).

View Article and Find Full Text PDF

During seed development, carbon is reallocated from maternal tissues to support germination and subsequent growth. As this pool of resources is depleted post-germination, the plant begins autotrophic growth through leaf photosynthesis. Photoassimilates derived from the leaf are used to sustain the plant and form new organs, including other vegetative leaves, stems, bracts, flowers, fruits, and seeds.

View Article and Find Full Text PDF

As originally proposed by Goethe in 1790, floral organs are derived from leaf-like structures. The conversion of leaves into different types of floral organ is mediated by floral homeotic proteins, which, as described by the ABCE model of flower development, act in a combinatorial manner. However, how these transcription factors bring about this transformation process is not well understood.

View Article and Find Full Text PDF

The transcription factors LEAFY (LFY) and APETALA1 (AP1), together with the AP1 paralog CAULIFLOWER (CAL), control the onset of flower development in a partially redundant manner. This redundancy is thought to be mediated, at least in part, through the regulation of a shared set of target genes. However, whether these genes are independently or cooperatively regulated by LFY and AP1/CAL is currently unknown.

View Article and Find Full Text PDF

The historic developmental hourglass concept depicts the convergence of animal embryos to a common form during the phylotypic period. Recently, it has been shown that a transcriptomic hourglass is associated with this morphological pattern, consistent with the idea of underlying selective constraints due to intense molecular interactions during body plan establishment. Although plants do not exhibit a morphological hourglass during embryogenesis, a transcriptomic hourglass has nevertheless been identified in the model plant Arabidopsis thaliana Here, we investigated whether plant hourglass patterns are also found postembryonically.

View Article and Find Full Text PDF

Background: The formation of flowers is one of the main model systems to elucidate the molecular mechanisms that control developmental processes in plants. Although several studies have explored gene expression during flower development in the model plant Arabidopsis thaliana on a genome-wide scale, a continuous series of expression data from the earliest floral stages until maturation has been lacking. Here, we used a floral induction system to close this information gap and to generate a reference dataset for stage-specific gene expression during flower formation.

View Article and Find Full Text PDF

Understanding how flowers develop from undifferentiated stem cells has occupied developmental biologists for decades. Key to unraveling this process is a detailed knowledge of the global regulatory hierarchies that control developmental transitions, cell differentiation and organ growth. These hierarchies may be deduced from gene perturbation experiments, which determine the effects on gene expression after specific disruption of a regulatory gene.

View Article and Find Full Text PDF

Background: Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood.

View Article and Find Full Text PDF

Over the past 20 years, classic genetic approaches have shown that the developmental program underlying flower formation involves a large number of transcriptional regulators. However, the target genes of these transcription factors, as well as the gene regulatory networks they control, remain largely unknown. Chromatin immunoprecipitation coupled to next-generation sequencing (ChIP-Seq), which allows the identification of transcription factor binding sites on a genome-wide scale, has been successfully applied to a number of transcription factors in Arabidopsis.

View Article and Find Full Text PDF

Assessing the molecular changes that occur over the course of flower development is hampered by difficulties in isolating sufficient amounts of floral tissue at specific developmental stages. This is especially problematic when investigating molecular events at very early stages of Arabidopsis flower development, as the floral buds are minute and are initiated sequentially such that a single flower on an inflorescence is at a given developmental stage. Moreover, young floral buds are hidden by older buds, which present an additional challenge for dissection.

View Article and Find Full Text PDF

The formation of flowers is one of the main models for studying the regulatory mechanisms that underlie plant development and evolution. Over the past three decades, extensive genetic and molecular analyses have led to the identification of a large number of key floral regulators and to detailed insights into how they control flower morphogenesis. In recent years, genome-wide approaches have been applied to obtaining a global view of the gene regulatory networks underlying flower formation.

View Article and Find Full Text PDF

How different organs are formed from small sets of undifferentiated precursor cells is a key question in developmental biology. To understand the molecular mechanisms underlying organ specification in plants, we studied the function of the homeotic selector genes APETALA3 (AP3) and PISTILLATA (PI), which control the formation of petals and stamens during Arabidopsis flower development. To this end, we characterized the activities of the transcription factors that AP3 and PI encode throughout flower development by using perturbation assays as well as transcript profiling and genomewide localization studies, in combination with a floral induction system that allows a stage-specific analysis of flower development by genomic technologies.

View Article and Find Full Text PDF

The ubiquitin-dependent N-end rule pathway relates the in vivo half-life of a protein to the identity of its N-terminal residue. This proteolytic system is present in all organisms examined and has been shown to have a multitude of functions in animals and fungi. In plants, however, the functional understanding of the N-end rule pathway is only beginning.

View Article and Find Full Text PDF