In the grain industry, lipases can hydrolyze the oils and fats in grains into glycerol and fatty acids, causing grain rancidity. If not detected and controlled, it would lead to the waste of grains and resources. In this research, rice bran was taken as the research object and a nanocomposite material with photoelectric activity, TiONFs-rGO, was developed by electrospinning technology.
View Article and Find Full Text PDFIn order to solve the problem of wastage of rice bran resources and make full use of the rice bran protein (RBP) with high nutrition, an oil-in-water (O/W) emulsion was successfully prepared from RBP by dynamic high pressure microjet technology (DHPM) assisted with gum arabic (GA), which provided an effective method for fully exploiting RBP resources. The results indicated that, the emulsion treated under 120 MPa exhibited superior properties. The dispersion of the emulsion droplets was more uniform, the zeta potential was -24.
View Article and Find Full Text PDFLiposomes were modified due to suboptimal stability. Soybean lecithin liposomes (SLip), hydrogenated soybean lecithin liposomes (HLip), and egg yolk lecithin liposomes (ELip) were modified with different concentrations of soybean isolate protein (SPI) to form SLip-SPI, HLip-SPI, and ELip-SPI. The physical properties, interactions, and stability of liposomes were investigated.
View Article and Find Full Text PDFIn this study, ice structuring proteins (WISPs) extracted from winter wheat in a frigid region were prepared and added to frozen-thawed dough. The WISPs were characterized, revealing that they contained a higher proportion of hydrophilic amino acids and had a molecular weight of approximately 15 kDa. The highest thermal hysteresis activity (THA) observed was 0.
View Article and Find Full Text PDFTo further enhance the stability of rice bran oil body (RBOB) emulsions, this study examined the impact of various concentrations of quercetin (QU) on the microstructure, rheological properties, oxidative stability, and digestive properties of RBOB emulsions. The results indicated that by incorporating QU concentration, the particle size of RBOB emulsions could be significantly reduced to 300 nm; QU could improve the surface hydrophobicity, the emulsifying activity index and emulsification stability index of RBOB emulsions of 550, 0.078 m/g and 50.
View Article and Find Full Text PDFOxidative stability is a key quality characteristic of edible oils, and the oil's antioxidant capacity decreases during the deodorization stage. This study explores the changes in radical formation, molecular structure, oxidative characteristics, fatty acids, and main bioactive compounds in soybean oil during deodorization. The lag phase decreased, whereas the total amount of spins of free radicals increased as the deodorization time increased from 90 to 150 min.
View Article and Find Full Text PDFIn this study, the stabilization mechanism and digestion behavior of Pickering emulsion prepared by a combination of chitosan (CS) and TEMPO-oxidized hyaluronic acid (HA) were investigated. Conductometric titration was used to determine the degree of oxidation and carboxylate content of TEMPO-oxidized HA. The results showed that the degree of oxidation increased proportionally with increasing oxidation time, and the electrostatic and hydrogen bonding interactions with CS were significantly enhanced.
View Article and Find Full Text PDFIn this study, emulsions stabilized by octenyl succinic anhydride-modified broken japonica rice starch (OSA-BJRS) were prepared at different ultrasonic power intensities for the delivery, controlled release, and improved bioavailability of quercetin. The OSA-BJRS emulsions ultrasonicated at 400 W exhibited the highest encapsulation efficiency (89.37 %) and loading efficiency (58.
View Article and Find Full Text PDFThe residue remaining after oil extraction from grape seed contain abundant procyanidins. An ultrasonic-assisted enzyme method was performed to achieve a high extraction efficiency of procyanidins when the optimal extraction conditions were 8 U/g of cellulase, ultrasound power of 200 W, ultrasonic temperature of 50 ℃, and ultrasonic reaction time of 40 min. The effects of free procyanidins on both radical scavenging activity and thermal stability at 40, 60, and 80 ℃ of the procyanidins-loaded liposomal systems prepared by the ultrasonic-assisted method were discussed.
View Article and Find Full Text PDFThe infrared spectroscopy (IR) signal of protein is prone to being covered by impurity signals, and the accuracy of the secondary structure content calculated using spectral data is poor. To tackle this challenge, a rapid high-precision quantitative model for protein secondary structure was proposed. Firstly, a two-dimensional correlation calculation was performed based on 60 groups of soybean protein isolates (SPI) infrared spectroscopy data, resulting in a two-dimensional correlation infrared spectroscopy (2DCOS-IR).
View Article and Find Full Text PDFThe beany flavor of soy protein isolate (SPI) creates barriers to their application in food processing. This study investigated the effect of ultrasonic-thermal synergistic treatments, combined with vacuum degassing, on the removal of volatile compounds from SPI. The results revealed that ultrasonic-thermal synergistic treatments altered protein secondary structure and increased fluorescence intensity and surface hydrophobicity, which affected the flavor-binding ability of protein, resulting in reduced electronic nose sensor response values.
View Article and Find Full Text PDFIn this paper, using a coprecipitation method to prepare FeO magnetic nanoparticles (FeO MNPS), magnetic dialdehyde starch nanoparticles with immobilized phospholipase A (MDSNIPLA) were successfully prepared by using green dialdehyde starch (DAS) instead of glutaraldehyde as the crosslinking agent. The FeO MNPS was characterized by infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), the Brunauer-Emmett-Teller (BET) surface area analysis method, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) et al. The results showed that the alkaline resistance and acid resistance of the enzyme were improved after the crosslinking of DAS.
View Article and Find Full Text PDFThis research explored the influences of ultrasonic and thermal treatments on the structure, functional properties, and beany flavor of soy protein isolate (SPI). In comparison with traditional thermal treatment, ultrasonic treatment effectively induced protein structural unfolding and exposure of hydrophobic groups, which reduced relative content of α-helix, increased relative content of β-turn, β-sheet and random coil, and improved the solubility, emulsifying and foaming properties of SPI. Both treatments significantly decreased the species and contents of flavor compounds, such as hexanal, (E)-2-nonenal, (Z)-2-heptenal and (E)-2-hexenal in SPI.
View Article and Find Full Text PDFMeaty flavor additive was prepared from soybean meal hydrolysate and xylose in the method of Maillard reaction. Under the conditions of reaction temperature 120 ℃, time 120 min and cysteine addition 10%, the Maillard products had strong flavor of meat. The content of free amino acids was 4.
View Article and Find Full Text PDFEmulsion stability and sustained-release can be improved with a non-covalent complexing of a soybean protein isolate (SPI) with -tannic acid (TA) and dynamic high-pressure microfluidization (DHPM). The microstructure, physicochemical properties, and interfacial properties were investigated. The properties of the DHPM-treated emulsions were improved significantly, with the 120 MPa DHPM-treated SPI-TA emulsion (SPI-TA 120) having the best microstructure.
View Article and Find Full Text PDFThe aim of this study is the effects of (+)-catechin (CC) covalent cross-linking (CCCI) (0.05-0.25 %, w/v) on the physicochemical properties, rheological properties, and oxidative stability of rice bran protein (RBP) emulsion.
View Article and Find Full Text PDF