Objective: The aim of the study is to examine the association between long-term occupational exposure to Mn and Fe and their health effects in workers.
Methods: 108 Mn workers were selected for the Mn exposure groups; 92 non-Mn workers were in the control group. Inductively coupled plasma-mass spectrometry was used to determine the Mn and Fe concentration in the working environment.
Sodium p-aminosalicylic acid (PAS-Na) has been previously shown to protect the brain from manganese (Mn)-induced toxicity. However, the efficacy of PAS-Na in protecting other organs from Mn toxicity and the mechanisms associated with this protection have yet to be addressed. Therefore, here, we assessed pancreatic damage in response to Mn treatment and the efficacy of PAS-Na in limiting this effect, along with specific mechanisms that mediate PAS-Na's protection.
View Article and Find Full Text PDFExcessive manganese (Mn) accumulation in the brain may induce an extrapyramidal disorder known as manganism. Inflammatory processes play a critical role in neurodegenerative diseases. Therapeutically, non-steroidal anti-inflammatory drugs or analogous anti-inflammatory therapies have neuroprotective effects.
View Article and Find Full Text PDF