Publications by authors named "Diantao Li"

The strong interaction between organic electrode materials (OEMs) and electrolyte components induces a high solubility tendency of OEMs, thus hindering the practical application of lithium-organic batteries. Herein, we propose an efficient strategy for intramolecular hydrogen bonds (HBs) to redistribute the charge of OEMs to weaken the interaction with electrolyte components, thereby suppressing their dissolution. For the designed 2,2',2''-(2,4,6-trihydroxybenzene-1,3,5-triyl) tris (1H-naphtho[2,3-d]imidazole-4,9-dione) (TPNQ) molecule, the intramolecular HBs (O-H⋅⋅⋅N and N-H⋅⋅⋅O) reduce the charge density of active sites and alter the charge distribution on the molecular skeleton.

View Article and Find Full Text PDF

Low-temperature zinc metal batteries (ZMBs) are highly challenged by Zn dendrite growth, especially at high current density. Here, starting from the intermolecular insights, we report a cation-anion association modulation strategy by matching different dielectric constant solvents and unveil the relationship between cation-anion association strength and Zn plating/stripping performance at low temperatures. The combination of comprehensive characterizations and theoretical calculations indicates that moderate ion association electrolytes with high ionic conductivity (12.

View Article and Find Full Text PDF

Zn metal as a promising anode for aqueous batteries suffers from severe zinc dendrites, anion-related side reactions, hydrogen evolution reaction (HER) and narrow electrochemical stable window (ESW). Herein, an "anions-in-colloid" hydrated deep eutectic electrolyte consisting of Zn(ClO) ⋅ 6HO, β-cyclodextrin (β-CD), and HO with mass ratio of 7 : 4.5 : 3 (ACDE-3) is designed to improve the stability of zinc anode.

View Article and Find Full Text PDF

Despite carbonate electrolytes exhibiting good stability to sulfurized polyacrylonitrile (SPAN), their chemical incompatibility with lithium (Li) metal anode leads to poor electrochemical performance of Li||SPAN full cells. While the SPAN employs conventional ether electrolytes that suffer from the shuttle effect, leading to rapid capacity fading. Here, we tailor a dilute electrolyte based on a low solvating power ether solvent that is both compatible with SPAN and Li metal.

View Article and Find Full Text PDF