In order to meet the needs of the femi-ultra-high spectral resolution test, an optical system of the femi-ultra-high spectral resolution spectrometer in the spectral range of 190-800 nm is designed based on the quaternary dispersion of the middle echelon grating under the condition that the volume and weight of the spectrometer do not increase sharply. After the optimization design, the spectral resolution can reach 51.149 fm in the full field of view of 0.
View Article and Find Full Text PDFA novel TT-type resonator was proposed for the first time, to our knowledge, to realize differential photoacoustic (PA) detection for trace gas measurement. The special design of the TT-type resonator allows us to install the microphone at the resonant center of the acoustic field to maximize the use of the absorption-induced PA signal. To meet the requirement of low gas consumption and easy integration, the TT-type resonator-based PA cell was fabricated as a fiber-coupled module with an inner volume of only 1.
View Article and Find Full Text PDFThe imaging spectrometer's high performance in practical applications may be compromised by environmental factors, particularly temperature variations, posing a challenge to its stability. Temperature fluctuations can induce spectral shift, directly impacting the accuracy of spectral measurements, subsequently influencing the precision of radiometric measurements. To address this issue, this study investigates a dual-channel UV imaging spectrometer.
View Article and Find Full Text PDFIn the wavelength modulation spectroscopy (WMS) gas detection system, the laser diode is usually stabilized at a constant temperature and driven by current injection. So, a high-precision temperature controller is indispensable in every WMS system. To eliminate wavelength drift influence and improve detection sensitivity and response speed, laser wavelength sometimes needs to be locked at the gas absorption center.
View Article and Find Full Text PDFA highly compact hyperspectral imager with an automatic geometric rectification function is developed in this study, which can be mounted on a UAV for ultra-wide range hyperspectral imaging. For better application, the system can provide visible light image transmission and hyperspectral imaging in the real-time mode. A specific design is proposed to allow the visible light camera and hyperspectral camera to share the same telescope optical path, making the system have a high integration level with a total mass of 1.
View Article and Find Full Text PDFA new type of optical system comprising double-grating and double wave band spectrometers is designed for atmospheric detection. The optical system can bring oxygen A band (758-778 nm) and water vapor absorption band (758-880 nm) on a charge-coupled device (CCD) at the same time for ultrahigh resolution spectrum measurement. Each absorbed band with three observation directions of atmospheric radiation is imaged in different positions of a common CCD.
View Article and Find Full Text PDFThe airborne ultraviolet imaging system, which assesses oil slick areas better than visible and infrared optical systems, was designed to monitor and track oil slicks in coastal regions. A model was built to achieve the upwelling radiance distribution of oil-covered sea and clean seawater, based on the radiance transfer software. With this model, the oil-seawater contrast, which affects the detection of oil-covered coastal areas, was obtained.
View Article and Find Full Text PDFA new advanced optical design based on the Wadsworth mounting for a broadband stigmatic, coma-free practical spectrometer with high imaging quality is presented. By the addition of an inclined cylindrical lens with a wedge angle, the stigmatic imaging conditions in a broad waveband have been obtained by our analysis. An example which presents excellent optical performances over a spectral broadband of 380nm centered at 570nm has been designed to certify the analysis.
View Article and Find Full Text PDF