Publications by authors named "Dianne M Broussard"

This paper reviews results that support a model in which memory for VOR gain is initially encoded in the flocculus, and in which cerebellar LTD and LTP are responsible for gain increases and gain decreases, respectively. We also review data suggesting that after it is encoded, motor memory can either be disrupted, possibly by a local mechanism, or else consolidated. We show that consolidation can be rapid, in which case the frequency dependence of learning is unchanged and we will argue that this is consistent with a local mechanism of consolidation.

View Article and Find Full Text PDF

Bidirectional changes in synaptic transmission have the potential to optimize the control of movement. However, it can be difficult to establish a causal relationship between the bidirectionality of synaptic plasticity and bidirectional changes in the speed of actual movements. We asked whether metabotropic glutamate receptor 1 (mGluR1) receptors, which participate in cerebellar long-term depression (LTD), are necessary for bidirectional motor learning in the vestibulo-ocular reflex (VOR).

View Article and Find Full Text PDF

Information about the position and movement of the head in space is coded by vestibular receptors and relayed to four nuclei that comprise the vestibular nuclear complex (VNC). Many additional brainstem nuclei are involved in the processing of vestibular information, receiving signals either directly from the eighth nerve or indirectly via projections from the VNC. In cats, squirrel monkeys, and macaque monkeys, we found neurochemically defined subdivisions within the medial vestibular nucleus (MVe) and within the functionally related nucleus prepositus hypoglossi (PrH).

View Article and Find Full Text PDF

The vestibulo-ocular reflex (VOR) exhibits motor learning that initially depends on synaptic plasticity in the cerebellar cortex. Learned decreases in VOR gain can be disrupted by rotation in darkness immediately following learning, but consolidate rapidly if the disruption stimulus is delayed. Disruption may simply reverse the synaptic changes that have recently occurred, or it may reflect new learning at other sites.

View Article and Find Full Text PDF

During sinusoidal rotation or translation, primary vestibular afferents modulate their discharge rates at the frequency of motion, effectively transmitting frequency-modulated (FM) signals. This study indicates a possible role for excitatory synapses in the processing of FM signals by vestibular brainstem pathways. Inputs to medial vestibular neurons were activated with FM pulse trains, while inhibitory transmission was blocked.

View Article and Find Full Text PDF

Motor memory is relatively labile immediately after learning but can become more stable through consolidation. We investigated consolidation of motor memory in the vestibuloocular reflex (VOR). Cats viewed the world through telescopic lenses during 60 min of passive rotation.

View Article and Find Full Text PDF

Adaptive rescaling is a widespread phenomenon that dynamically adjusts the input-output relationship of a sensory system in response to changes in the ambient stimulus conditions. Rescaling has been described in the central vestibular neurons of normal cats. After recovery from unilateral vestibular damage, the vestibulo-ocular reflex (VOR) remains nonlinear for rotation toward the damaged side.

View Article and Find Full Text PDF

The basis for the consolidation of memory is a controversial topic, particularly in the case of motor memory. One view is that motor memory is transferred, partially or completely, to a new location during the consolidation process ("systems consolidation"). We investigated this possibility in a primitive motor system, the vestibulo-ocular reflex (VOR).

View Article and Find Full Text PDF

Motor learning is a very basic, essential form of learning that appears to share common mechanisms across different motor systems. We evaluate and compare a few conceptual models for learning in a relatively simple neural system, the vestibulo-ocular reflex (VOR) of vertebrates. We also compare the different animal models that have been used to study the VOR.

View Article and Find Full Text PDF

The horizontal rotatory vestibulo-ocular reflex (VOR) stabilizes gaze by moving the eyes at an angular velocity proportional to head velocity, and can accomplish this for a broad range of frequencies and amplitudes of head motion. Rotation at 5 Hz and above may be processed differently than lower frequencies by the VOR network. We recorded discharges and calculated spike densities of a small sample of vestibular neurons in alert cats during low-velocity rotation at frequencies up to 8 Hz.

View Article and Find Full Text PDF

Gaze is stabilized during head movements primarily by the vestibuloocular reflex (VOR). After a unilateral canal plug, the VOR's response is reduced. Recovery of the VOR may be brought about by changes in the efficacy of brain stem synapses or by other mechanisms.

View Article and Find Full Text PDF

The vestibulo-ocular reflex (VOR) allows clear vision during head movements by generating compensatory eye movements. Its response to horizontal rotation is reduced after one horizontal semicircular canal is plugged, but recovers partially over time. The majority of VOR interneurons contribute to the shortest VOR pathway, the so-called three-neuron arc, which includes only two synapses in the brainstem.

View Article and Find Full Text PDF