The role of ribosome biogenesis in erythroid development is supported by the recognition of erythroid defects in ribosomopathies in both Diamond-Blackfan anemia and 5q- syndrome. Whether ribosome biogenesis exerts a regulatory function on normal erythroid development is still unknown. In the present study, a detailed characterization of ribosome biogenesis dynamics during human and murine erythropoiesis showed that ribosome biogenesis is abruptly interrupted by the decline in ribosomal DNA transcription and the collapse of ribosomal protein neosynthesis.
View Article and Find Full Text PDFDiamond blackfan anemia (DBA) is a well-known inherited bone marrow failure syndrome mostly caused by mutations in ribosomal protein (RP) genes but also rarely in the hematopoietic transcription factor gene, GATA1, or TSR2, a ribosomal protein (Rps26) chaperone gene. About 25% of patients have heterozygous mutations in the RPS19 gene, which leads to haploinsufficiency of Rps19 protein in most cases. However, some RPS19 missense mutations appear to act in a dominant negative fashion.
View Article and Find Full Text PDFThe stem cell factor receptor (SCF) c-Kit plays a pivotal role in regulating cell proliferation and survival in many cell types. In particular, c-Kit is required for early amplification of erythroid progenitors, while it must disappear from cell surface for the cell entering the final steps of maturation in an erythropoietin-dependent manner. We initially observed that imatinib (IM), an inhibitor targeting the tyrosine kinase activity of c-Kit concomitantly down-regulated the expression of c-Kit and accelerated the Epo-driven differentiation of erythroblasts in the absence of SCF.
View Article and Find Full Text PDFThe death domain containing TNF receptor 6 (CD95/Fas) is a direct target for the NF-κB transcription factor and is repressed in solid tumors such as colon carcinomas. Previously, we reported that the Fas death receptor, while overexpressed in low-risk myelodysplastic syndromes (MDS), becomes undetectable on CD34(+) progenitors when the disease progresses to secondary acute myeloid leukemia (AML). This study determined the interplay between NF-κB and Fas during MDS progression.
View Article and Find Full Text PDF