While nature extensively uses electrostatic bonding between oppositely charged polymers to assemble and stabilize materials, harnessing these interactions in synthetic systems has been challenging. Synthetic materials cross-linked with a high density of ionic bonds, such as polyelectrolyte complexes, only function properly when their charge interactions are attenuated in the presence of ample amounts of water; dehydrating these materials creates such strong Coulombic bonding that they become brittle, non-thermoplastic, and virtually impossible to process. We present a strategy to intrinsically moderate the electrostatic bond strengths in apolar polymeric solids by the covalent grafting of attenuator spacers to the charge carrying moieties.
View Article and Find Full Text PDFSemiconducting polymers owe their optoelectronic properties to the delocalized electronic structure along their conjugated backbone. Their spectral features are therefore uniquely sensitive to the conformation of the polymer, where mechanical stretching of the chain leads to distinct vibronic shifts. Here we demonstrate how the optomechanical response of conjugated polyelectrolytes can be used to detect their encapsulation in a protein capsid.
View Article and Find Full Text PDF