Both CO2 retention, or hypercapnia, and skeletal muscle dysfunction predict higher mortality in critically ill patients. Mechanistically, muscle injury and reduced myogenesis contribute to critical illness myopathy, and while hypercapnia causes muscle wasting, no research has been conducted on hypercapnia-driven dysfunctional myogenesis in vivo. Autophagy flux regulates myogenesis by supporting muscle stem cell -satellite cell- activation, and previous data suggests that hypercapnia inhibits autophagy.
View Article and Find Full Text PDFReduced skeletal muscle mass and oxidative capacity coexist in patients with pulmonary emphysema and are independently associated with higher mortality. If reduced cellular respiration contributes to muscle atrophy in that setting remains unknown. Using a mouse with genetically induced pulmonary emphysema that recapitulates muscle dysfunction, we found that reduced activity of succinate dehydrogenase (SDH) is a hallmark of its myopathic changes.
View Article and Find Full Text PDFPatients with chronic obstructive pulmonary disease (COPD)-pulmonary emphysema often develop locomotor muscle dysfunction, which entails reduced muscle mass and force-generation capacity and is associated with worse outcomes, including higher mortality. Myogenesis contributes to adult muscle integrity during injury-repair cycles. Injurious events crucially occur in the skeletal muscles of patients with COPD in the setting of exacerbations and infections, which lead to acute decompensations for limited periods of time, after which patients typically fail to recover the baseline status they had before the acute event.
View Article and Find Full Text PDFPatients with pulmonary emphysema often develop locomotor muscle dysfunction, which is independently associated with disability and higher mortality in that population. Muscle dysfunction entails reduced force generation capacity, which partially depends on fibers' oxidative potential, yet very little mechanistic research has focused on muscle respiration in pulmonary emphysema. Using a recently established animal model of pulmonary emphysema-driven skeletal muscle dysfunction, we found downregulation of SDHC (succinate dehydrogenase subunit C) in association with lower oxygen consumption and fatigue tolerance in locomotor muscles.
View Article and Find Full Text PDFPatients with chronic obstructive pulmonary disease (COPD) usually develop skeletal muscle dysfunction, which represents a major comorbidity in these patients and is strongly associated with mortality and other poor outcomes. Although clinical data indicates that accelerated protein degradation and metabolic disruption are common associations of muscle dysfunction in COPD, there is very limited data on the mechanisms regulating the process, in part, due to the lack of research performed on a validated animal model of pulmonary emphysema. This model deficiency complicates the translational value of data generated with highly reductionist settings.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
November 2019
Multifunctional Ca/calmodulin-dependent protein kinase II (CaMKII) is a multigene family with isoform-specific regulation of vascular smooth muscle (VSM) functions. In previous studies, we found that vascular injury resulted in VSM dedifferentiation and reduced expression of the CaMKIIγ isoform in medial wall VSM. Smooth muscle knockout of CaMKIIγ enhanced injury-induced VSM neointimal hyperplasia, whereas CaMKIIγ overexpression inhibited VSM proliferation and neointimal formation.
View Article and Find Full Text PDFHigh CO retention, or hypercapnia, is associated with worse outcomes in patients with chronic pulmonary diseases. Skeletal muscle wasting is also an independent predictor of poor outcomes in patients with acute and chronic pulmonary diseases. Although previous evidence indicates that high CO accelerates skeletal muscle catabolism via AMPK (AMP-activated protein kinase)-FoxO3a-MuRF1 (E3-ubiquitin ligase muscle RING finger protein 1), little is known about the role of high CO in regulating skeletal muscle anabolism.
View Article and Find Full Text PDFThe multifunctional Ca(2+)/calmodulin-dependent protein kinase II δ-isoform (CaMKIIδ) promotes vascular smooth muscle (VSM) proliferation, migration, and injury-induced vascular wall neointima formation. The objective of this study was to test if microRNA-30 (miR-30) family members are endogenous regulators of CaMKIIδ expression following vascular injury and whether ectopic expression of miR-30 can inhibit CaMKIIδ-dependent VSM cell function and neointimal VSM hyperplasia induced by vascular injury. The CaMKIIδ 3'UTR contains a consensus miR-30 binding sequence that is highly conserved across species.
View Article and Find Full Text PDFVascular smooth muscle (VSM) expresses calcium/calmodulin-dependent protein kinase II (CaMKII)-δ and -γ isoforms. CaMKIIδ promotes VSM proliferation and vascular remodeling. We tested CaMKIIγ function in vascular remodeling after injury.
View Article and Find Full Text PDFOne transcription factor mediator of Ca(2+)-signals is cAMP response element-binding protein (CREB). CREB expression and/or activity negatively correlates with vascular smooth muscle (VSM) cell proliferation and migration. Multifunctional Ca(2+)/calmodulin-dependent protein kinases, including CaMKII, have been demonstrated to regulate CREB activity through both positive and negative phosphorylation events in vitro, but the function of CaMKII as a proximal regulator of CREB in intact cell systems, including VSM, is not clear.
View Article and Find Full Text PDFThese studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform.
View Article and Find Full Text PDF