Cell size is a key contributor to tissue morphogenesis . As a notable example, growth plate hypertrophic chondrocytes use cellular biogenesis and disproportionate fluid uptake to expand 10-20 times in size to drive lengthening of endochondral bone . Similarly, notochordal cells expand to one of the largest cell types in the developing embryo to drive axial extension .
View Article and Find Full Text PDFCell migration is important during early animal embryogenesis. Cell migration and cell shape are controlled by actin assembly and dynamics, which depend on capping proteins, including the barbed-end heterodimeric actin capping protein (CP). CP activity can be regulated by capping-protein-interacting (CPI) motif proteins, including CARMIL (capping protein Arp2/3 myosin-I linker) family proteins.
View Article and Find Full Text PDFThe spine gives structural support for the adult body, protects the spinal cord, and provides muscle attachment for moving through the environment. The development and maturation of the spine and its physiology involve the integration of multiple musculoskeletal tissues including bone, cartilage, and fibrocartilaginous joints, as well as innervation and control by the nervous system. One of the most common disorders of the spine in human is adolescent idiopathic scoliosis (AIS), which is characterized by the onset of an abnormal lateral curvature of the spine of <10° around adolescence, in otherwise healthy children.
View Article and Find Full Text PDFDistal arthrogryposis (DA) is group of syndromes characterized by congenital joint contractures. Treatment development is hindered by the lack of vertebrate models. Here, we describe a zebrafish model in which a common MYH3 missense mutation (R672H) was introduced into the orthologous zebrafish gene smyhc1 (slow myosin heavy chain 1) (R673H).
View Article and Find Full Text PDFCerebrospinal fluid (CSF) physiology is important for the development and homeostasis of the central nervous system, and its disruption has been linked to scoliosis in zebrafish [1, 2]. Suspended in the CSF is an extracellular structure called the Reissner fiber, which extends from the brain through the central canal of the spinal cord. Zebrafish scospondin-null mutants are unable to assemble a Reissner fiber and fail to form a straight body axis during embryonic development [3].
View Article and Find Full Text PDFVertebrate heart development requires spatiotemporal regulation of gene expression to specify cardiomyocytes, increase the cardiomyocyte population through proliferation, and to establish and maintain atrial and ventricular cardiac chamber identities. The evolutionarily conserved chromatin factor Gon4-like (Gon4l), encoded by the zebrafish ugly duckling (udu) locus, has previously been implicated in cell proliferation, cell survival, and specification of mesoderm-derived tissues including blood and somites, but its role in heart formation has not been studied. Here we report two distinct roles of Gon4l/Udu in heart development: regulation of cell proliferation and maintenance of ventricular identity.
View Article and Find Full Text PDFThe human spinal column is a dynamic, segmented, bony, and cartilaginous structure that protects the neurologic system and simultaneously provides balance and flexibility. Children with developmental disorders that affect the patterning or shape of the spine can be at risk of neurologic and other physiologic dysfunctions. The most common developmental disorder of the spine is scoliosis, a lateral deformity in the shape of the spinal column.
View Article and Find Full Text PDFCell proliferation has generally been considered dispensable for anteroposterior extension of embryonic axis during vertebrate gastrulation. Signal transducer and activator of transcription 3 (Stat3), a conserved controller of cell proliferation, survival and regeneration, is associated with human scoliosis, cancer and Hyper IgE Syndrome. Zebrafish Stat3 was proposed to govern convergence and extension gastrulation movements in part by promoting Wnt/Planar Cell Polarity (PCP) signaling, a conserved regulator of mediolaterally polarized cell behaviors.
View Article and Find Full Text PDFFormation of the heart tube requires synchronized migration of endocardial and myocardial precursors. Our previous studies indicated that in S1pr2/Gα13-deficient embryos, impaired endoderm convergence disrupted the medial migration of myocardial precursors, resulting in the formation of two myocardial populations. Here we show that endoderm convergence also regulates endocardial migration.
View Article and Find Full Text PDFBackground: Cell polarity is essential for directed migration of mesenchymal cells and morphogenesis of epithelial tissues. Studies in cultured cells indicate that a condensed Golgi Complex (GC) is essential for directed protein trafficking to establish cell polarity underlying directed cell migration. Dynamic changes of the GC intracellular organization during early vertebrate development remain to be investigated.
View Article and Find Full Text PDFDuring vertebrate gastrulation, Wnt/planar cell polarity (PCP) signaling orchestrates polarized cell behaviors underlying convergence and extension (C&E) movements to narrow embryonic tissues mediolaterally and lengthen them anteroposteriorly. Here, we have identified Gpr125, an adhesion G protein-coupled receptor, as a novel modulator of the Wnt/PCP signaling system. Excess Gpr125 impaired C&E movements and the underlying cell and molecular polarities.
View Article and Find Full Text PDFEmbryonic axis formation in vertebrates is initiated by the establishment of the dorsal Nieuwkoop blastula organizer, marked by the nuclear accumulation of maternal β-catenin, a transcriptional effector of canonical Wnt signaling. Known regulators of axis specification include the canonical Wnt pathway components that positively or negatively affect β-catenin. An involvement of G-protein coupled receptors (GPCRs) was hypothesized from experiments implicating G proteins and intracellular calcium in axis formation, but such GPCRs have not been identified.
View Article and Find Full Text PDFGastrulation is a fundamental phase of animal embryogenesis during which germ layers are specified, rearranged, and shaped into a body plan with organ rudiments. Gastrulation involves four evolutionarily conserved morphogenetic movements, each of which results in a specific morphologic transformation. During emboly, mesodermal and endodermal cells become internalized beneath the ectoderm.
View Article and Find Full Text PDFSix3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of Six3 in telencephalon patterning and differentiation are not well understood.
View Article and Find Full Text PDFαE-catenin is an actin-binding protein associated with the E-cadherin-based adherens junction that regulates cell-cell adhesion. Recent studies identified additional E-cadherin-independent roles of αE-catenin in regulating plasma membrane dynamics and cell migration. However, little is known about the roles of αE-catenin in these different cellular processes in vivo during early vertebrate development.
View Article and Find Full Text PDFDuring vertebrate gastrulation, convergence and extension cell movements are coordinated with the anteroposterior and mediolateral embryonic axes. Wnt planar cell polarity (Wnt/PCP) signaling polarizes the motile behaviors of cells with respect to the anteroposterior embryonic axis. Understanding how Wnt/PCP signaling mediates convergence and extension (C&E) movements requires analysis of the mechanisms employed to alter cell morphology and behavior with respect to embryonic polarity.
View Article and Find Full Text PDFIn this paper we discuss a model of zebrafish embryo notochord development based on the effect of surface tension of cells at the boundaries. We study the process of interaction of mesodermal cells at the boundaries due to adhesion and cortical tension, resulting in cellular intercalation. From in vivo experiments, we obtain cell outlines of time-lapse images of cell movements during zebrafish embryo development.
View Article and Find Full Text PDFGastrulation movements form the germ layers and shape them into the vertebrate body. Gastrulation entails a variety of cell behaviors, including directed cell migration and cell delamination, which are also involved in other physiological and pathological processes, such as cancer metastasis. Decreased Prostaglandin E(2) (PGE(2)) synthesis due to interference with the Cyclooxygenase (Cox) and Prostaglandin E synthase (Ptges) enzymes halts gastrulation and limits cancer cell invasiveness, but how PGE(2) regulates cell motility remains unclear.
View Article and Find Full Text PDFEpiboly spreads and thins the blastoderm over the yolk cell during zebrafish gastrulation, and involves coordinated movements of several cell layers. Although recent studies have begun to elucidate the processes that underlie these epibolic movements, the cellular and molecular mechanisms involved remain to be fully defined. Here, we show that gastrulae with altered Galpha(12/13) signaling display delayed epibolic movement of the deep cells, abnormal movement of dorsal forerunner cells, and dissociation of cells from the blastoderm, phenocopying e-cadherin mutants.
View Article and Find Full Text PDFThe vertebrate heart arises during gastrulation as cardiac precursors converge from the lateral plate mesoderm territories toward the embryonic midline and extend rostrally to form bilateral heart fields. G protein-coupled receptors (GPCRs) mediate functions of the nervous and immune systems; however, their roles in gastrulation remain largely unexplored. Here, we show that the zebrafish homologs of the Agtrl1b receptor and its ligand, Apelin, implicated in physiology and angiogenesis, control heart field formation.
View Article and Find Full Text PDFGastrulation is a fundamental process during embryogenesis that shapes proper body architecture and establishes three germ layers through coordinated cellular actions of proliferation, fate specification, and movement. Although many molecular pathways involved in the specification of cell fate and polarity during vertebrate gastrulation have been identified, little is known of the signaling that imparts cell motility. Here we show that prostaglandin E(2) (PGE(2)) production by microsomal PGE(2) synthase (Ptges) is essential for gastrulation movements in zebrafish.
View Article and Find Full Text PDFEmbryonic morphogenesis is accomplished by cellular movements, rearrangements, and cell fate inductions. Vertebrate gastrulation entails morphogenetic processes that generate three germ layers, endoderm, mesoderm, and ectoderm, shaped into head, trunk, and tail. To understand how cell migration mechanistically contributes to tissue shaping during gastrulation, we examined migration of lateral mesoderm in the zebrafish.
View Article and Find Full Text PDFGalpha(12/13) have been implicated in numerous cellular processes, however, their roles in vertebrate gastrulation are largely unknown. Here, we show that during zebrafish gastrulation, suppression of both Galpha(12) and Galpha(13) signaling by overexpressing dominant negative proteins and application of antisense morpholino-modified oligonucleotide translation interference disrupted convergence and extension without changing embryonic patterning. Analyses of mesodermal cell behaviors revealed that Galpha(12/13) are required for cell elongation and efficient dorsalward migration during convergence independent of noncanonical Wnt signaling.
View Article and Find Full Text PDFCell movements occur in all phases of animal life from embryogenesis, to maintaining adult organs, to comprising a critical component of pathology. During gastrulation, cells demonstrate a repertoire of morphogenetic movements coordinated with fate inductions to sculpt the embryonic body. The morphogenetic behaviors, underlying mechanisms, and their control, are the subject of much current study.
View Article and Find Full Text PDFDuring vertebrate gastrulation, convergence and extension cell movements both narrow and lengthen the forming embryonic axis. Concurrently, positional information established principally by the ventral-to-dorsal gradient of bone morphogenetic protein activity specifies cell fates within the gastrula. New data, primarily from zebrafish, have identified domains of distinct convergence and extension movements, and have established a role for the noncanonical Wnt signaling pathway in promoting the mediolateral cell polarization that underlies this morphogenetic process.
View Article and Find Full Text PDF