Hydraulic fracturing ("fracking") is used in unconventional gas drilling to allow for the free flow of natural gas from rock. Sand in fracking fluid is pumped into the well bore under high pressure to enter and stabilize fissures in the rock. In the process of manipulating the sand on site, respirable dust (fracking sand dust, FSD) is generated.
View Article and Find Full Text PDFBackground: Methicillin-resistant contamination on surfaces including turnout gear had been found throughout a number of fire stations. As such, the outer shell barrier of turnout gear jackets may be an indirect transmission source and proper disinfection is essential to reduce the risk of exposure to fire fighters. Cleaning practices vary considerably among fire stations, and a method to assess disinfection of gear washed in commercial washer/extractors is needed.
View Article and Find Full Text PDFFused deposition modeling (FDM™) 3-dimensional printing uses polymer filament to build objects. Some polymer filaments are formulated with additives, though it is unknown if they are released during printing. Three commercially available filaments that contained carbon nanotubes (CNTs) were printed with a desktop FDM™ 3-D printer in a chamber while monitoring total particle number concentration and size distribution.
View Article and Find Full Text PDFSize and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions.
View Article and Find Full Text PDFThis experimental study aimed to evaluate airborne particulates and volatile organic compounds (VOCs) from surgical smoke when a local exhaust ventilation (LEV) system is in place. Surgical smoke was generated from human tissue in an unoccupied operating room using an electrocautery surgical device for 15 min with 3 different test settings: (1) without LEV control; (2) control with a wall irrigation suction unit with an in-line ultra-low penetration air filter; and (3) control with a smoke evacuation system. Flow rate of LEVs was approximately 35 L/min and suction was maintained within 5 cm of electrocautery interaction site.
View Article and Find Full Text PDFExposure to crystalline silica results in serious adverse health effects, most notably, silicosis. An understanding of the mechanism(s) underlying silica-induced pulmonary toxicity is critical for the intervention and/or prevention of its adverse health effects. Rats were exposed by inhalation to crystalline silica at a concentration of 15 mg/m, 6 hr/day, 5 days/week for 3, 6 or 12 weeks.
View Article and Find Full Text PDFBoron nitride nanotubes (BNNTs) are an emerging engineered nanomaterial attracting significant attention due to superior electrical, chemical and thermal properties. Currently, the toxicity profile of this material is largely unknown. Commercial grade BNNTs are composed of a mixture (BNNT-M) of ∼50-60% BNNTs, and ∼40-50% impurities of boron and hexagonal boron nitride.
View Article and Find Full Text PDFThe effects of acute pulmonary coexposures to silica and diesel particulate matter (DPM), which may occur in various mining operations, were investigated in vivo. Rats were exposed by intratracheal instillation (IT) to silica (50 or 233 µg), DPM (7.89 or 50 µg) or silica and DPM combined in phosphate-buffered saline (PBS) or to PBS alone (control).
View Article and Find Full Text PDFResistance spot welding is a common process to join metals in the automotive industry. Adhesives are often used as sealers to seams of metals that are joined. Anti-spatter compounds sometimes are sprayed onto metals to be welded to improve the weldability.
View Article and Find Full Text PDFPulmonary toxicity studies on carbon nanotubes focus primarily on as-produced materials and rarely are guided by a life cycle perspective or integration with exposure assessment. Understanding toxicity beyond the as-produced, or pure native material, is critical, due to modifications needed to overcome barriers to commercialization of applications. In the first series of studies, the toxicity of as-produced carbon nanotubes and their polymer-coated counterparts was evaluated in reference to exposure assessment, material characterization, and stability of the polymer coating in biological fluids.
View Article and Find Full Text PDFIndium-tin oxide (ITO) is used to produce flat panel displays and several other technology products. Composed of 90% indium oxide (InO) and 10% tin oxide (SnO) by weight, ITO is synthesized under conditions of high heat via a process known as sintering. Indium lung disease, a recently recognized occupational illness, is characterized by pulmonary alveolar proteinosis, fibrosis, and emphysema.
View Article and Find Full Text PDFFunctionalized multi-walled carbon nanotube (fMWCNT) development has been intensified to improve their surface activity for numerous applications, and potentially reduce toxic effects. Although MWCNT exposures are associated with lung tumorigenesis in vivo, adverse responses associated with exposure to different fMWCNTs in human lung epithelium are presently unknown. This study hypothesized that different plasma-coating functional groups determine MWCNT neoplastic transformation potential.
View Article and Find Full Text PDFPrinting devices are known to emit chemicals into the indoor atmosphere. Understanding factors that influence release of chemical contaminants from printers is necessary to develop effective exposure assessment and control strategies. In this study, a desktop fused deposition modeling (FDM) 3-dimensional (3-D) printer using acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) filaments and two monochrome laser printers were evaluated in a 0.
View Article and Find Full Text PDFWith rapid development of novel nanotechnologies that incorporate engineered nanomaterials (ENMs) into manufactured products, long-term, low dose ENM exposures in occupational settings is forecasted to occur with potential adverse outcomes to human health. Few ENM human health risk assessment efforts have evaluated tumorigenic potential of ENMs. Two widely used nano-scaled metal oxides (NMOs), cerium oxide (nCeO) and ferric oxide (nFeO) were screened in the current study using a sub-chronic exposure to human primary small airway epithelial cells (pSAECs).
View Article and Find Full Text PDFThe emission of cerium oxide nanoparticles (CeO) from diesel engines, using cerium compounds as a catalyst to lower the diesel exhaust particles, is a health concern. We have previously shown that CeO induced pulmonary inflammation and lung fibrosis. The objective of the present study was to investigate the modification of fibroblast function and the role of epithelial-mesenchymal transition (EMT) in CeO-induced fibrosis.
View Article and Find Full Text PDFWelding fume is a complex mixture of different potentially cytotoxic and genotoxic metals, such as chromium (Cr), manganese (Mn), nickel (Ni), and iron (Fe). Documented health effects have been observed in workers exposed to welding fume. The objective of the study was to use an animal model to identify potential biomarkers of epigenetic changes (e.
View Article and Find Full Text PDFInhaled diacetyl vapors are associated with flavorings-related lung disease, a potentially fatal airway disease. The reactive α-dicarbonyl group in diacetyl causes protein damage in vitro. Dicarbonyl/l-xylulose reductase (DCXR) metabolizes diacetyl into acetoin, which lacks this α-dicarbonyl group.
View Article and Find Full Text PDFA significant amount of research toward commercial development of cellulose based nanomaterials (CNM) is now in progress with some potential applications. Using human A549 and THP-1 cells, we evaluated the biological responses of various CNMs, made out of similar material but with functional and morphological variations. While A549 cells displayed minimal or no cytotoxic responses following exposure to CNMs, THP-1 cells were more susceptible to cytotoxicity, cellular damage and inflammatory responses.
View Article and Find Full Text PDFSilver is increasingly being used in garments to exploit its antibacterial properties. Information on the presence of silver nanoparticles (AgNPs) in garments and their in vivo penetration across healthy and impaired skin from use is limited. We investigated the presence of AgNPs in a silver containing garment and in the stratum corneum (SC) of healthy subjects (CTRLs) and individuals with atopic dermatitis (AD).
View Article and Find Full Text PDFBackground: Although classified as metal oxides, cobalt monoxide (CoO) and lanthanum oxide (La2O3) nanoparticles, as representative transition and rare earth oxides, exhibit distinct material properties that may result in different hazardous potential in the lung. The current study was undertaken to compare the pulmonary effects of aerosolized whole body inhalation of these nanoparticles in mice.
Results: Mice were exposed to filtered air (control) and 10 or 30 mg/m(3) of each particle type for 4 days and then examined at 1 h, 1, 7 and 56 days post-exposure.
Background: Graphene, a monolayer of carbon, is an engineered nanomaterial (ENM) with physical and chemical properties that may offer application advantages over other carbonaceous ENMs, such as carbon nanotubes (CNT). The goal of this study was to comparatively assess pulmonary and systemic toxicity of graphite nanoplates, a member of the graphene-based nanomaterial family, with respect to nanoplate size.
Methods: Three sizes of graphite nanoplates [20 μm lateral (Gr20), 5 μm lateral (Gr5), and <2 μm lateral (Gr1)] ranging from 8-25 nm in thickness were characterized for difference in surface area, structure,, zeta potential, and agglomeration in dispersion medium, the vehicle for in vivo studies.
Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high.
View Article and Find Full Text PDFDesktop three-dimensional (3D) printers are becoming commonplace in business offices, public libraries, university labs and classrooms, and even private homes; however, these settings are generally not designed for exposure control. Prior experience with a variety of office equipment devices such as laser printers that emit ultrafine particles (UFP) suggests the need to characterize 3D printer emissions to enable reliable risk assessment. The aim of this study was to examine factors that influence particulate emissions from 3D printers and characterize their physical properties to inform risk assessment.
View Article and Find Full Text PDFDirect-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g.
View Article and Find Full Text PDFCobalt monoxide (CoO) and lanthanum oxide (La2O3) nanoparticles are 2 metal oxide nanoparticles with different redox potentials according to their semiconductor properties. By utilizing these two nanoparticles, this study sought to determine how metal oxide nanoparticle's mode of toxicological action is related to their physio-chemical properties in human small airway epithelial cells (SAEC). We investigated cellular toxicity, production of superoxide radicals and alterations in gene expression related to oxidative stress, and cellular death at 6 and 24 h following exposure to CoO and La2O3(administered doses: 0, 5, 25, and 50 µg/ml) nanoparticles.
View Article and Find Full Text PDF