In 2013, the Centers for Disease Control highlighted Clostridium difficile as an urgent threat for antibiotic-resistant infections, in part due to the emergence of highly virulent fluoroquinolone-resistant strains. Limited therapeutic options currently exist, many of which result in disease relapse. We sought to identify molecules specifically targeting C.
View Article and Find Full Text PDFWe have developed a novel series of heteroaromatic BACE-1 inhibitors. These inhibitors interact with the enzyme in a unique fashion that allows for potent binding in a non-traditional paradigm. In addition to the elucidation of their binding profile, we have discovered a pH dependent effect on the binding affinity as a result of the intrinsic pK(a) of these inhibitors and the pH of the BACE-1 enzyme binding assay.
View Article and Find Full Text PDFA series of beta-site amyloid precursor protein cleaving enzyme (BACE-1) inhibitors containing a psi(CH2NH) reduced amide bond were synthesized. Incorporation of this reduced amide isostere as a non-cleavable peptide surrogate afforded inhibitors possessing low nanomolar potencies in both an enzymatic and cell-based assay.
View Article and Find Full Text PDFA small molecule nonpeptide inhibitor of beta-secretase has been developed, and its binding has been defined through crystallographic determination of the enzyme-inhibitor complex. The molecule is shown to bind to the catalytic aspartate residues in an unprecedented manner in the field of aspartyl protease inhibition. Additionally, the complex reveals a heretofore unknown S(3) subpocket that is created by the inhibitor.
View Article and Find Full Text PDF