Publications by authors named "Diane R Eaker"

The combination of electrophysiology and electrochemistry acquisition methods using a single carbon fiber microelectrode (CFM) in the brain has enabled more extensive analysis of neurochemical release, neural activity, and animal behavior. Predominantly, analog CMOS (Complementary Metal Oxide Semiconductor) switches are used for these interleaved applications to alternate the CFM output between electrophysiology and electrochemistry acquisition circuitry. However, one underlying issue with analog CMOS switches is the introduction of transient voltage artifacts in recorded electrophysiology signals resulting from CMOS charge injection.

View Article and Find Full Text PDF

The ability to measure neurotransmitter activity using implanted electrochemical sensors offers researchers a potent technique for analyzing neural activity across specific neural circuitry. We have developed a wirelessly controlled device, WINCS Harmoni, to observe and measure neurotransmitter dynamics at up to four separate sensors, with high temporal and spatial resolution. WINCS Harmoni also incorporates a versatile neurostimulator that can be synchronized with electrochemical recording.

View Article and Find Full Text PDF

Object: Conventional deep brain stimulation (DBS) devices continue to rely on an open-loop system in which stimulation is independent of functional neural feedback. The authors previously proposed that as the foundation of a DBS "smart" device, a closed-loop system based on neurochemical feedback, may have the potential to improve therapeutic outcomes. Alterations in neurochemical release are thought to be linked to the clinical benefit of DBS, and fast-scan cyclic voltammetry (FSCV) has been shown to be effective for recording these evoked neurochemical changes.

View Article and Find Full Text PDF

There is an increased body of evidence to suggest that the vasa vasorum play a major role in the progression and complications of vulnerable plaque leading to acute coronary syndrome. We propose that detecting changes in the flow in the vascular wall by intravascular ultrasound signals can quantify the presence of vasa vasorum. The results obtained in a porcine model of atherosclerosis suggest that intravascular ultrasound-based estimates of blood flow in the arterial wall can be used in vivo in a clinical research setting to establish the density of vasa vasorum as an indicator of plaque vulnerability.

View Article and Find Full Text PDF

Purpose: It has been shown that coherently scattered x rays can be used to discriminate and identify specific components in a mixture of low atomic weight materials. The authors demonstrated a new method of doing coherently scattered x-ray tomography with a thin sheet of x ray.

Methods: A collimated x-ray fan-beam, a parallel polycapillary collimator, and a phantom consisting of several biocompatible materials of low attenuation-based contrast were used to investigate the feasibility of the method.

View Article and Find Full Text PDF

Micro-computed tomography (micro-CT) is an important tool in biomedical research and preclinical applications that can provide visual inspection of and quantitative information about imaged small animals and biological samples such as vasculature specimens. Currently, micro-CT imaging uses projection data acquired at a large number (300-1000) of views, which can limit system throughput and potentially degrade image quality due to radiation-induced deformation or damage to the small animal or specimen. In this work, we have investigated low-dose micro-CT and its application to specimen imaging from substantially reduced projection data by using a recently developed algorithm, referred to as the adaptive-steepest-descent-projection-onto-convex-sets (ASD-POCS) algorithm, which reconstructs an image through minimizing the image total-variation and enforcing data constraints.

View Article and Find Full Text PDF

Structural data about the human lung fine structure are mainly based on stereological methods applied to serial sections. As these methods utilize 2D images, which are often not contiguous, they suffer from inaccuracies which are overcome by analysis of 3D micro-CT images of the never-sectioned specimen. The purpose of our study was to generate a complete data set of the intact three-dimensional architecture of the human acinus using high-resolution synchrotron-based micro-CT (synMCT).

View Article and Find Full Text PDF

Objective: This study is motivated by the possibility of using computed tomography (CT) to detect early coronary atherosclerosis by the increased CT values within the arterial wall resulting from vasa vasorum proliferation.

Methods: Coronary arteries (n = 5) with early atherosclerotic changes were injected with Microfil and scanned (micro-CT). Noise was added to the CT projection data sets (to represent the radiation exposure of current clinical CT scanners) and then reconstructed to generate 3-dimensional images at different voxel sizes.

View Article and Find Full Text PDF

Analog summation methods of x-ray imaging have nonlinearity in signal readout and dynamic range limitations. To minimize these limitations, a photon counting CCD-based gamma camera imaging system has been developed and evaluated.

View Article and Find Full Text PDF