Multiple approaches to quantitative structure-activity relationship (QSAR) modeling using various statistical or machine learning techniques and different types of chemical descriptors have been developed over the years. Oftentimes models are used in consensus to make more accurate predictions at the expense of model interpretation. We propose a simple, fast, and reliable method termed Multi-Descriptor Read Across (MuDRA) for developing both accurate and interpretable models.
View Article and Find Full Text PDFElucidation of the mechanistic relationships between drugs, their targets, and diseases is at the core of modern drug discovery research. Thousands of studies relevant to the drug-target-disease (DTD) triangle have been published and annotated in the Medline/PubMed database. Mining this database affords rapid identification of all published studies that confirm connections between vertices of this triangle or enable new inferences of such connections.
View Article and Find Full Text PDFThe enormous increase in the amount of publicly available chemical genomics data and the growing emphasis on data sharing and open science mandates that cheminformaticians also make their models publicly available for broad use by the scientific community. Chembench is one of the first publicly accessible, integrated cheminformatics Web portals. It has been extensively used by researchers from different fields for curation, visualization, analysis, and modeling of chemogenomics data.
View Article and Find Full Text PDFMotivation: Advances in the field of cheminformatics have been hindered by a lack of freely available tools. We have created Chembench, a publicly available cheminformatics portal for analyzing experimental chemical structure-activity data. Chembench provides a broad range of tools for data visualization and embeds a rigorous workflow for creating and validating predictive Quantitative Structure-Activity Relationship models and using them for virtual screening of chemical libraries to prioritize the compound selection for drug discovery and/or chemical safety assessment.
View Article and Find Full Text PDFUnlabelled: We built a novel web-based platform for performing discrete molecular dynamics simulations of proteins. In silico protein folding involves searching for minimal frustration in the vast conformational landscape. Conventional approaches for simulating protein folding insufficiently address the problem of simulations in relevant time and length scales necessary for a mechanistic understanding of underlying biomolecular phenomena.
View Article and Find Full Text PDF