Our group has previously found that in silico, mechanical anisotropy may be interrogated by exciting transversely isotropic materials with geometrically asymmetric acoustic radiation force excitations and then monitoring the associated induced displacements in the region of excitation. We now translate acoustic radiation force-based anisotropy assessment to human muscle in vivo and investigate its clinical relevance to monitoring muscle degeneration in Duchenne muscular dystrophy (DMD). Clinical anisotropy assessments were performed using Viscoelastic Response ultrasound, with a degree of anisotropy reflected by the ratios of Viscoelastic Response relative elasticity (RE) or relative viscosity (RV) measured with the asymmetric radiation force oriented parallel versus perpendicular to muscle fiber alignment.
View Article and Find Full Text PDF