Publications by authors named "Diane M Sepa-Kishi"

This study investigates whether ladder climbing (LC), as a model of resistance exercise, can reverse whole-body and skeletal muscle deleterious metabolic and inflammatory effects of high-fat (HF) diet-induced obesity in mice. To accomplish this, Swiss mice were fed for 17 weeks either standard chow (SC) or an HF diet and then randomly assigned to remain sedentary or to undergo 8 weeks of LC training with progressive increases in resistance weight. Prior to beginning the exercise intervention, HF-fed animals displayed a 47% increase in body weight (BW) and impaired ability to clear blood glucose during an insulin tolerance test (ITT) when compared to SC animals.

View Article and Find Full Text PDF

The objective of this study was to investigate whether cold-induced browning of the subcutaneous (Sc) inguinal (Ing) white adipose tissue (WAT) increases the capacity of this tissue to oxidize fatty acids through uncoupling protein 1 (UCP1)-mediated thermogenesis. To accomplish that, rats were acclimated to cold (4°C for 7 days). Subsequently, interscapular and aortic brown adipose tissues (iBAT and aBAT, respectively), epididymal (Epid), and Sc Ing WAT were used for adipocyte isolation.

View Article and Find Full Text PDF

Impaired angiogenesis is a hallmark of metabolically dysfunctional adipose tissue in obesity. However, the underlying mechanisms restricting angiogenesis within this context remain ill-defined. Here, we demonstrate that induced endothelial-specific depletion of the transcription factor Forkhead Box O1 (FoxO1) in male mice led to increased vascular density in adipose tissue.

View Article and Find Full Text PDF

This study investigated the effects of cold acclimation on circulating fibroblast growth factor 21 (FGF21) levels, as well as its production and signaling in classical brown and white adipose tissues. Male Wistar rats were cold (4°C) acclimatized for 7 days. Subsequently, liver, interscapular and aortic BAT (iBAT and aBAT), and the Sc Ing and epididymal (Epid) white adipose tissues were extracted.

View Article and Find Full Text PDF

This study investigated the molecular and metabolic responses of the liver to cold-induced thermogenesis. To accomplish that, male Wistar rats were exposed to cold (4°C) for 7 days. Livers were then extracted and used for the determination of glucose and fatty acid oxidation, glycogen content, the expression and content of proteins involved in insulin signaling, as well as in the regulation of gluconeogenesis and de novo lipid synthesis.

View Article and Find Full Text PDF

The white adipose tissue (WAT) exhibits great plasticity and can undergo "browning" and acquire features of the brown adipose tissue (BAT), which takes place following cold exposure, chronic endurance exercise or β3-adrenergic stimulation. WAT that underwent browning is characterized by the presence of "beige" adipocytes, which are morphologically similar to brown adipocytes, express uncoupling protein 1 (UCP1) and are considered thermogenically competent. Thus, inducing a BAT-like phenotype in the WAT could promote energy dissipation within this depot, reducing the availability of substrate that would otherwise be stored in the WAT.

View Article and Find Full Text PDF

This study investigated fiber type-specific metabolic responses and the molecular mechanisms that regulate glucose and fat metabolism in oxidative and glycolytic muscles upon cold acclimation. Male Wistar rats were exposed to cold (4 °C) for 7 days, and then glycogen synthesis and content, glucose and palmitate oxidation, and the molecular mechanisms underlying these metabolic pathways were assessed in soleus (Sol), extensor digitorum longus (EDL), and epitrochlearis (Epit) muscles. Cold acclimation increased glycogen synthesis, glycogen content, glucose oxidation, and reduced glycogen synthase (GS) phosphorylation only in Sol muscles.

View Article and Find Full Text PDF

This study investigated the effects of high-fat (HF) diet on parameters of oxidative stress among muscles with distinct fiber type composition and oxidative capacities. To accomplish that, male Wistar rats were fed either a low-fat standard chow (SC) or a HF diet for 8 weeks. Soleus, extensor digitorum longus (EDL), and epitrochlearis muscles were collected and mitochondrial HO (mtHO) emission, palmitate oxidation, and gene expression and antioxidant system were measured.

View Article and Find Full Text PDF

Oxfenicine is a carnitine-palmitoyl transferase 1b (CPT-1b)-specific inhibitor that has been shown to improve whole body insulin sensitivity while suppressing fatty acid (FA) oxidation and increasing circulating FA. Because the white adipose tissue (WAT) is an organ that stores and releases FAs, this study investigated whether oxfenicine-induced inhibition of FA oxidation affected adiposity and WAT metabolism in rats fed either low (LF) or high-fat (HF) diets. Following 8 wk of dietary intervention, male Sprague-Dawley rats were given a daily intraperitoneal injection of oxfenicine (150 mg/kg body wt) or vehicle (PBS) for 3 wk.

View Article and Find Full Text PDF

Exercise training increases the thermogenic capacity of white adipose tissue (WAT), an effect known as "browning" of the WAT. Here, we discuss how this affects whole-body energy homeostasis. We put forth the hypothesis that browning of the subcutaneous WAT allows the organism to adjust its metabolic rate according to energy availability while coping with increased heat production through exercise.

View Article and Find Full Text PDF

This study examined the alterations in triglyceride (TG) breakdown and storage in subcutaneous inguinal (SC Ing) and epididymal (Epid) fat depots following chronic endurance training. Male Wistar rats were either kept sedentary (Sed) or subjected to endurance training (Ex) at 70-85% peak VO2 for 6 weeks. At weeks 0, 3, and 6 blood was collected at rest and immediately after a bout of submaximal exercise of similar relative intensity to assess whole-body lipolysis.

View Article and Find Full Text PDF