The reported proof of principle study demonstrated the feasibility of local delivery of a c-Met inhibitor (VXc-140) in a subcutaneous xenograft tumor model. VXc-140 was formulated in a wafer delivery system for direct implantation into the tumor. Systemic and local tumor exposure of VXc-140 was analyzed.
View Article and Find Full Text PDFAberrant activation of signaling through the RAS-RAF-MEK-ERK (MAPK) pathway is implicated in numerous cancers, making it an attractive therapeutic target. Although BRAF and MEK-targeted combination therapy has demonstrated significant benefit beyond single-agent options, the majority of patients develop resistance and disease progression after approximately 12 months. Reactivation of ERK signaling is a common driver of resistance in this setting.
View Article and Find Full Text PDFThis work demonstrates the application of a 3D culture system-Cells-in-Gels-in-Paper (CiGiP)-in evaluating the metabolic response of lung cancer cells to ionizing radiation. The 3D tissue-like construct-prepared by stacking multiple sheets of paper containing cell-embedded hydrogels-generates a gradient of oxygen and nutrients that decreases monotonically in the stack. Separating the layers of the stack after exposure enabled analysis of the cellular response to radiation as a function of oxygen and nutrient availability; this availability is dictated by the distance between the cells and the source of oxygenated medium.
View Article and Find Full Text PDFThis work describes a 3D, paper-based assay that can isolate sub-populations of cells based on their invasiveness (i.e., distance migrated in a hydrogel) in a gradient of concentration of oxygen (O2).
View Article and Find Full Text PDFPlatinum-based DNA-damaging chemotherapy is standard-of-care for most patients with lung cancer but outcomes remain poor. This has been attributed, in part, to the highly effective repair network known as the DNA-damage response (DDR). ATR kinase is a critical regulator of this pathway, and its inhibition has been shown to sensitize some cancer, but not normal, cells in vitro to DNA damaging agents.
View Article and Find Full Text PDFThe poor success rate of discovering new, effective chemotherapeutics for oncology may reflect the failure of targeting treatments to the more aggressive, tumorigenic cells of the malignancy. Data have now emerged from several laboratories, examining both liquid and solid primary tumor tissues, that implicate cancer stem cells (CSCs) as the 'master-driver' cellular population for tumorigenicity. Moreover, these putative CSCs appear relatively resistant to existing chemotherapeutic and radiation therapy.
View Article and Find Full Text PDFNovel therapies for the treatment of solid tumors have generally failed to improve patient overall survival. These therapeutic approaches are typically focused on targeting signaling pathways implicated in cell growth and/or survival in order to shrink the malignant mass and achieve an objective clinical response; however, too often these responses are followed by eventual regrowth of the tumor. This clinical conundrum could be explained by the existence of a tumorigenic cell population that is relatively resistant to these therapies and retains pluripotent status in order to repopulate the original tumor and/or contribute to distant metastasis following treatment.
View Article and Find Full Text PDFMitogen-activated protein kinases (MAPKs) comprise a family of well-conserved serine/threonine kinases that control a vast array of physiological functions in a number of organisms ranging from yeast to mammals. Recently gene-targeting experiments have shed light on in vivo functions of MAPKs. In particular, embryos deficient in extracellular signal-regulated kinase (ERK) 2 lack mesoderm differentiation and placental angiogenesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2003
The extracellular signal-regulated kinase (ERK) is a component of the mitogen-activated protein kinase cascade. Exon 2 of erk2 was deleted by homologous recombination and resulted in embryonic lethality at embryonic day 6.5.
View Article and Find Full Text PDFErk5 is a mitogen-activated protein kinase, the biological role of which is largely undefined. Therefore, we deleted the erk5 gene in mice to assess its function in vivo. Inactivation of the erk5 gene resulted in defective blood-vessel and cardiac development leading to embryonic lethality around embryonic days 9.
View Article and Find Full Text PDF