Appl Environ Microbiol
October 2014
Comparisons of in vivo (mouse stomach) and in vitro (laboratory culture) transcriptomes of Lactobacillus reuteri strain 100-23 were made by microarray analysis. These comparisons revealed the upregulation of genes associated with acid tolerance, including urease production, in the mouse stomach. Inactivation of the ureC gene reduced the acid tolerance of strain 100-23 in vitro, and the mutant was outcompeted by the wild type in the gut of ex-Lactobacillus-free mice.
View Article and Find Full Text PDFLactobacillus rhamnosus HN001 is a probiotic strain reported to increase resistance to epithelium-adherent and -invasive intestinal pathogens in experimental animals. To increase understanding of the relationship between strain HN001 and the bowel, transcription of selected genes in the mucosa of the murine small bowel was measured. Mice previously naive to lactobacilli (Lactobacillus-free mice) were examined after daily exposure to HN001 in drinking water.
View Article and Find Full Text PDFPhylogenetic analysis of gut communities of vertebrates is advanced, but the relationships, especially at the trophic level, between commensals that share gut habitats of monogastric animals have not been investigated to any extent. Lactobacillus reuteri strain 100-23 and Lactobacillus johnsonii strain 100-33 cohabit in the forestomach of mice. According to the niche exclusion principle, this should not be possible because both strains can utilise the two main fermentable carbohydrates present in the stomach digesta: glucose and maltose.
View Article and Find Full Text PDFRecent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L.
View Article and Find Full Text PDFLactobacillus reuteri strain 100-23 together with a Lactobacillus-free mouse model, provides a system with which the molecular traits underpinning bacterial commensalism in vertebrates can be studied. A polysaccharide was extracted from sucrose-containing liquid cultures of strain 100-23. Chemical analysis showed that this exopolysaccharide was a levan (β-2, 6-linked fructan).
View Article and Find Full Text PDFLactobacillus reuteri 100-23 is a bacterial commensal of the gastrointestinal tract of mice. Previous studies have shown that colonization of the murine gut by this strain stimulates small-bowel enterocytes to produce proinflammatory cytokines. This is associated with a mild, transitory inflammatory response 6 days after inoculation of formerly Lactobacillus-free animals.
View Article and Find Full Text PDFMonoassociations of germ-free animals with colitogenic and probiotic bacterial strains trigger intestinal epithelial cell (IEC) activation and host-derived feedback mechanisms. To characterize the impact of a single nonpathogenic bacterial strain on the intestinal epithelium in the presence of an established microbiota, we inoculated reconstituted Lacotobacillus-free (RLF) mice at 8 wk of age with Lactobacillus reuteri 100-23. Primary IEC from the small intestine of L.
View Article and Find Full Text PDFMembers of the genus Lactobacillus are common inhabitants of the proximal gastrointestinal tract of animals such as mice, rats, chickens and pigs, where they form epithelial biofilms. Little is known about the traits that facilitate biofilm formation and gut colonization. This study investigated the ecological role of a glucosyltransferase (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.
View Article and Find Full Text PDFThe dlt operon of Gram-positive bacteria encodes proteins required for the incorporation of D-alanine esters into cell wall-associated teichoic acids (TA). D-alanylation of TA has been shown to be important for acid tolerance, resistance to antimicrobial peptides, adhesion, biofilm formation, and virulence of a variety of pathogenic organisms. The aim of this study was to determine the importance of D-alanylation for colonization of the gastrointestinal tract by Lactobacillus reuteri 100-23.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2005
The luxS gene of Lactobacillus reuteri 100-23C was amplified by PCR, cloned, and then sequenced. To define a physiological and ecological role for the luxS gene in L. reuteri 100-23C, a luxS mutant was constructed by insertional mutagenesis.
View Article and Find Full Text PDFMembers of the genus Lactobacillus are common inhabitants of the gut, yet little is known about the traits that contribute to their ecological performance in gastrointestinal ecosystems. Lactobacillus reuteri 100-23 persists in the gut of the reconstituted Lactobacillus-free mouse after a single oral inoculation. Recently, three genes of this strain that were specifically induced (in vivo induced) in the murine gut were identified (38).
View Article and Find Full Text PDFLactobacilli are common inhabitants of the gastrointestinal tracts of mammals and have received considerable attention due to their putative health-promoting properties. Little is known about the traits that enhance the ability of these bacteria to inhabit the gastrointestinal tract. In this paper we describe the development and application of a strategy based on in vivo expression technology (IVET) that enables detection of Lactobacillus reuteri genes specifically induced in the murine gut.
View Article and Find Full Text PDF