Publications by authors named "Diane L Dehaven-Hudkins"

In Parkinson's disease (PD), dyskinesia develops following long-term treatment with 3,4-dihydroxyphenylalanine (L-dopa). Given the prominent role of the opioid system in basal ganglia function, nonselective opioid receptor antagonists have been tested for antidyskinetic efficacy in the clinic (naltrexone and naloxone), although without success. In the current study, ADL5510, a novel, orally active opioid antagonist with mu opioid receptor selectivity, was examined in L-dopa-treated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) macaques.

View Article and Find Full Text PDF

Selective, nonpeptidic delta opioid receptor agonists have been the subject of great interest as potential novel analgesic agents. The discoveries of BW373U86 (1) and SNC80 (2) contributed to the rapid expansion of research in this field. However, poor drug-like properties and low therapeutic indices have prevented clinical evaluation of these agents.

View Article and Find Full Text PDF

Selective delta opioid receptor agonists are promising potential therapeutic agents for the treatment of various types of pain conditions. A spirocyclic derivative was identified as a promising hit through screening. Subsequent lead optimization identified compound 20 (ADL5859) as a potent, selective, and orally bioavailable delta agonist.

View Article and Find Full Text PDF

A series of N-substituted trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidines, mu opioid receptor antagonists, analogs of alvimopan, were prepared using solid phase methodology. This study led to the identification of a highly selective mu opioid receptor antagonist, which interacts selectively with mu peripheral receptors.

View Article and Find Full Text PDF

The localization of opioid receptors and their endogenous peptide ligands within the gastrointestinal (GI) tract and their role in the coordination of propulsion and secretion underscores the importance of opioid receptors in the maintenance of GI homeostasis. The peripherally acting micro-opioid receptor antagonists alvimopan and methylnaltrexone (MNTX) are currently under investigation as therapeutic agents to treat the deleterious GI side effects associated with opioid administration. These compounds have demonstrated efficacy in numerous animal models of GI function, and clinical studies have revealed their efficacy in the treatment of postoperative ileus (POI) and opioid-induced bowel dysfunction.

View Article and Find Full Text PDF

A novel series of malonamide derivatives was synthesized. These amides were shown to be potent and selective kappa opioid receptor agonists.

View Article and Find Full Text PDF

Purpose Of Review: The aim of this article is to familiarize anesthesiologists with recent research investigating peripheral opioid analgesia. The review focuses on studies of peripheral receptor distribution in humans and clinical data that support the hypothesis of peripheral analgesia that have been published over the past 2 years.

Recent Findings: Recent anatomical studies using human tissue have detected the presence of mu-opioid receptors in epidermal and dermal layers of normal skin, although expression was not altered in certain dermal clinical conditions.

View Article and Find Full Text PDF

Postoperative ileus (POI) is often exacerbated by opioid analgesic use during and following surgery, since mu opioid receptor activation results in a further delay of gastrointestinal (GI) transit. The effects of alvimopan, a novel, selective, and peripherally acting mu opioid receptor antagonist, and the reference compound methylnaltrexone, upon POI were investigated in rats. Under isoflurane anesthesia, POI was induced by laparotomy with intestinal manipulation.

View Article and Find Full Text PDF

A novel series of phenylamino acetamide derivatives was synthesized. These amides were shown to be potent and selective kappa opioid receptor agonists.

View Article and Find Full Text PDF

Two novel chemical classes of kappa opioid receptor agonists, chroman-2-carboxamide derivatives and 2,3-dihydrobenzofuran-2-carboxamide derivatives, were synthesized. These agents exhibited high and selective affinity for the kappa opioid receptor.

View Article and Find Full Text PDF

Some kappa opioid receptor agonists of the arylacetamide class, for example, ICI 199441 (1), were found to strongly inhibit the activity of cytochrome P450 2D6 (CYP2D6) (1: CYP2D6 IC50=26 nM). Certain analogs bearing a substituted sulfonylamino group, for example, 13, were discovered to have significantly reduced CYP2D6 inhibitory activity (13: CYP2D6 IC50>10 microM) while displaying high affinity toward the cloned human kappa opioid receptor, good kappa/delta and kappa/mu selectivity, and potent in vitro and in vivo agonist activity.

View Article and Find Full Text PDF

A novel series of kappa (kappa) opioid receptor agonists were synthesized by incorporating the key structural features of known kappa opioid agonists while replacing the aryl acetamide portion with substituted amino acid conjugates. Compounds 3j (Ki = 6.7 nM), 3k (Ki = 3.

View Article and Find Full Text PDF

A series of 3-substituted analogs (3) of the parent kappa agonist, 1, were prepared to limit access to the central nervous system. With the exception of compound 3j, all other compounds bound to the human kappa opioid receptor with high affinity (K(i)=0.31-9.

View Article and Find Full Text PDF

A new class of kappa-opioid receptor agonists is described. The design of these agents was based upon energy minimization and structural overlay studies of the generic azepin-2-one structure 3 with the crystal structure of arylacetamide kappa agonist 1, ICI 199441. The most active compound identified was ligand 4a (K(i)=0.

View Article and Find Full Text PDF

Loperamide and three of its analogs were evaluated for their ability to inhibit binding to cloned human opioid receptor subtypes and to produce antipruritus and antinociception following local s.c. administration to rodents.

View Article and Find Full Text PDF

Although uterine distension in rats results in an escape reflex, there exists no model of uterine cervical distension (UCD), the pain stimulus during the first stage of labor. The aims of this study were to develop such a model in virgin rats and to test whether peripherally restricted kappa opioid receptor (KOR) agonists (ADL 10-0101, ADL 10-0102, ADL 10-0116) inhibit responses to UCD. Under intravenous (i.

View Article and Find Full Text PDF