Curr Opin Microbiol
June 2023
Wheat production is under constant threat from pests and pathogens, with fungal foliar diseases causing considerable annual yield losses. However, recent improvements in genomic tools and resources provide an unprecedented opportunity to enhance wheat's resilience in the face of these biotic constraints. Here, we discuss the impact of these advances on three key areas of managing fungal diseases of wheat: (i) enhancing the abundance of resistance traits available for plant breeding, (ii) accelerating the identification of novel fungicide targets and (iii) developing better tools for disease diagnostics and surveillance.
View Article and Find Full Text PDFBackground: Reliance on fungicides to manage disease creates selection pressure for the evolution of resistance in fungal and oomycete pathogens. Rust fungi (Pucciniales) are major pathogens of cereals and other crops and have been classified as low-risk for developing resistance to fungicides; no case of field failure of fungicides in a cereal rust disease has yet been recorded. Recently, the Asian soybean rust pathogen, Phakopsora pachyrhizi evolved resistance to several fungicide classes, prompting us to screen a large sample of the globally widespread wheat yellow rust pathogen, Puccinia striiformis f.
View Article and Find Full Text PDFAsh dieback is a devastating fungal disease of ash trees that has swept across Europe and recently reached the UK. This emergent pathogen has received little study in the past and its effect threatens to overwhelm the ash population. In response to this we have produced some initial genomics datasets and taken the unusual step of releasing them to the scientific community for analysis without first performing our own.
View Article and Find Full Text PDF