Dihydropyridines such as amlodipine are widely used as antihypertensive agents, being prescribed to ∼70 million Americans and >0.4 billion adults worldwide. Dihydropyridines block voltage-gated Ca channels in resistance vessels, leading to vasodilation and a reduction in blood pressure.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
June 2017
Store-operated calcium channels provide calcium signals to the cytoplasm of a wide variety of cell types. The basic components of this signaling mechanism include a mechanism for discharging Ca stores (commonly but not exclusively phospholipase C and inositol 1,4,5-trisphosphate), a sensor in the endoplasmic reticulum that also serves as an activator of the plasma membrane channel (STIM1 and STIM2), and the store-operated channel (Orai1, 2 or 3). The advent of mice genetically altered to reduce store-operated calcium entry globally or in specific cell types has provided important tools to understand the functions of these widely encountered channels in specific and clinically important physiological systems.
View Article and Find Full Text PDFStore-operated calcium entry (SOCE) is an important Ca(2+) influx pathway in somatic cells. In addition to maintaining endoplasmic reticulum (ER) Ca(2+) stores, Ca(2+) entry through store-operated channels regulates essential signaling pathways in numerous cell types. Patients with mutations in the store-operated channel subunit ORAI1 exhibit defects in store-operated Ca(2+) influx, along with severe immunodeficiency, congenital myopathy and ectodermal dysplasia.
View Article and Find Full Text PDFThe nourishment of neonates by nursing is the defining characteristic of mammals. However, despite considerable research into the neural control of lactation, an understanding of the signaling mechanisms underlying the production and expulsion of milk by mammary epithelial cells during lactation remains largely unknown. Here we demonstrate that a store-operated Ca(2+) channel subunit, Orai1, is required for both optimal Ca(2+) transport into milk and for milk ejection.
View Article and Find Full Text PDFThe ubiquitously expressed nucleoside diphosphate kinases (Nm23/NDPK/Awd) are a large family of multifunctional enzymes implicated in nucleic acid metabolism and in normal and abnormal development. Here, we describe the generation and characterization of NDPK A- and B-deficient (Nme1(-/-)/Nme2(-/-)) mice in which >95% of the enzyme activity is eliminated. These mice are undersized, die perinatally, and exhibit a spectrum of hematological phenotypes including severe anemia, impaired maturation of erythrocytes, and abnormal hematopoiesis in the liver and bone marrow.
View Article and Find Full Text PDFIntroduction: Sclerosteosis is a rare high bone mass genetic disorder in humans caused by inactivating mutations in SOST, the gene encoding sclerostin. Based on these data, sclerostin has emerged as a key negative regulator of bone mass. We generated SOST knockout (KO) mice to gain a more detailed understanding of the effects of sclerostin deficiency on bone.
View Article and Find Full Text PDFTo catalog factors that may contribute to the completion of myogenesis, we have been looking for molecular differences between BC3H1 and C2C12 cells. Cells of the BC3H1 tumor line, though myogenic, are nonfusing, and withdraw from the cell cycle only reversibly, whereas cells of the C2C12 line fuse, differentiate terminally, and express several muscle-specific gene products that BC3H1 cells do not. Relative to C2C12 cells, BC3H1 cells underaccumulated cyclin-dependent kinase inhibitor p21 and underaccumulated transcripts for p21, GADD45, CDO, decorin, osteopontin, H19, fibronectin, and thrombospondin-1 (tsp-1).
View Article and Find Full Text PDF