Diffuse intrinsic pontine glioma (DIPG) is an incurable brain tumor of childhood characterized by histone mutations at lysine 27, which results in epigenomic dysregulation. There has been a failure to develop effective treatment for this tumor. Using a combined RNAi and chemical screen targeting epigenomic regulators, we identify the polycomb repressive complex 1 (PRC1) component BMI1 as a critical factor for DIPG tumor maintenance in vivo.
View Article and Find Full Text PDFPineoblastomas (PBs) are rare, aggressive pediatric brain tumors of the pineal gland with modest overall survival despite intensive therapy. We sought to define the clinical and molecular spectra of PB to inform new treatment approaches for this orphan cancer. Tumor, blood, and clinical data from 91 patients with PB or supratentorial primitive neuroectodermal tumor (sPNETs/CNS-PNETs), and 2 pineal parenchymal tumors of intermediate differentiation (PPTIDs) were collected from 29 centres in the Rare Brain Tumor Consortium.
View Article and Find Full Text PDFLoss of SMARCB1 is the hallmark genetic event that characterizes rhabdoid tumors in children. Rhabdoid tumors of the brain (ATRT) occur in young children and are particularly challenging with poor long-term survival. SMARCB1 is a member of the SWI/SNF chromatin remodeling complex that is responsible for determining cellular pluripotency and lineage commitment.
View Article and Find Full Text PDFHypoxia and expression of hypoxia-related biomarkers are associated with disease progression and treatment failure in prostate cancer (PCa). We have reported that exosomes (nanovesicles of 30-150 nm in diameter) secreted by human PCa cells under hypoxia promote invasiveness and stemness in naïve PCa cells. Here, we identified the unique microRNAs (miRNAs) loaded in exosomes secreted by PCa cells under hypoxia.
View Article and Find Full Text PDFAtypical teratoid rhabdoid tumor (ATRT) is an aggressive and malignant pediatric brain tumor. Polo-like kinase 1 () is highly expressed in many cancers and essential for mitosis. Overexpression of PLK1 promotes chromosome instability and aneuploidy by overriding the G2-M DNA damage and spindle checkpoints.
View Article and Find Full Text PDFKinase inhibitors are effective cancer therapies, but tumors frequently develop resistance. Current strategies to circumvent resistance target the same or parallel pathways. We report here that targeting a completely different process, autophagy, can overcome multiple BRAF inhibitor resistance mechanisms in brain tumors.
View Article and Find Full Text PDFWe recently reported that atypical teratoid rhabdoid tumors (ATRTs) comprise at least two transcriptional subtypes with different clinical outcomes; however, the mechanisms underlying therapeutic heterogeneity remained unclear. In this study, we analyzed 191 primary ATRTs and 10 ATRT cell lines to define the genomic and epigenomic landscape of ATRTs and identify subgroup-specific therapeutic targets. We found ATRTs segregated into three epigenetic subgroups with distinct genomic profiles, SMARCB1 genotypes, and chromatin landscape that correlated with differential cellular responses to a panel of signaling and epigenetic inhibitors.
View Article and Find Full Text PDFMedulloblastoma is the most common type of malignant brain tumor that affects children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients perform poorly with significant morbidity. Gene expression profiling has revealed that monopolar spindle 1 (MPS1) (TTK1) is highly expressed in medulloblastoma patient samples compared to that noted in normal cerebellum.
View Article and Find Full Text PDFBackground: Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive, fatal, childhood tumors that arise in the brainstem. DIPGs have no effective treatment, and their location and diffuse nature render them inoperable. Radiation therapy remains the only standard of care for this devastating disease.
View Article and Find Full Text PDFCheckpoint kinase 1 (CHK1) is an integral component of the cell cycle as well as the DNA Damage Response (DDR) pathway. Previous work has demonstrated the effectiveness of inhibiting CHK1 with small-molecule inhibitors, but the role of CHK1 mediated DDR in medulloblastoma is unknown. CHK1, both at the mRNA and protein level, is highly expressed in medulloblastoma and elevated CHK1 expression in Group3 medulloblastoma is an adverse prognostic marker.
View Article and Find Full Text PDFIntroduction: Pediatric adamantinomatous craniopharyngioma (ACP) is a histologically benign but clinically aggressive brain tumor that arises from the sellar/suprasellar region. Despite a high survival rate with current surgical and radiation therapy (75-95 % at 10 years), ACP is associated with debilitating visual, endocrine, neurocognitive and psychological morbidity, resulting in excheptionally poor quality of life for survivors. Identification of an effective pharmacological therapy could drastically decrease morbidity and improve long term outcomes for children with ACP.
View Article and Find Full Text PDFEpendymoma (EPN) in childhood is a brain tumor with substantial mortality. Inflammatory response has been identified as a molecular signature of high-risk Group A EPN. To better understand the biology of this phenotype and aid therapeutic development, transcriptomic data from Group A and B EPN patient tumor samples, and additional malignant and normal brain data, were analyzed to identify the mechanism underlying EPN Group A inflammation.
View Article and Find Full Text PDFBackground: Rhabdoid brain tumours, also called atypical teratoid rhabdoid tumours, are lethal childhood cancers with characteristic genetic alterations of SMARCB1/hSNF5. Lack of biological understanding of the substantial clinical heterogeneity of these tumours restricts therapeutic advances. We integrated genomic and clinicopathological analyses of a cohort of patients with atypical teratoid rhabdoid tumours to find out the molecular basis for clinical heterogeneity in these tumours.
View Article and Find Full Text PDFBackground: Although, substantial experimental evidence related to diagnosis and treatment of pediatric central nervous system (CNS) neoplasms have been demonstrated, the understanding of the etiology and pathogenesis of the disease remains scarce. Recent microRNA (miRNA)-based research reveals the involvement of miRNAs in various aspects of CNS development and proposes that they might compose key molecules underlying oncogenesis. The current study evaluated miRNA differential expression detected between pediatric embryonal brain tumors and normal controls to characterize candidate biomarkers related to diagnosis, prognosis and therapy.
View Article and Find Full Text PDFUnlabelled: Autophagy inhibition is a potential therapeutic strategy in cancer, but it is unknown which tumors will benefit. The BRAF(V600E) mutation has been identified as important in pediatric central nervous system (CNS) tumors and is known to affect autophagy in other tumor types. We evaluated CNS tumor cells with BRAF(V600E) and found that mutant (but not wild-type) cells display high rates of induced autophagy, are sensitive to pharmacologic and genetic autophagy inhibition, and display synergy when the clinically used autophagy inhibitor chloroquine was combined with the RAF inhibitor vemurafenib or standard chemotherapeutics.
View Article and Find Full Text PDFMedulloblastoma is a pediatric brain tumor with a variable prognosis due to clinical and genomic heterogeneity. Among the 4 major genomic sub-groups, patients with MYC amplified tumors have a particularly poor prognosis despite therapy with surgery, radiation and chemotherapy. Targeting the MYC oncogene has traditionally been problematic.
View Article and Find Full Text PDFBackground: Medulloblastoma is the most common type of malignant brain tumor that afflicts children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients do poorly with significant morbidity.
Methods: To identify new molecular targets, we performed an integrated genomic analysis using structural and functional methods.
Better understanding of ependymoma (EPN) biology at relapse is needed to improve therapy at this critical event. Convincing data exist defining transcriptionally distinct posterior fossa (PF) sub-groups A and B at diagnosis. The clinical and biological consequence of these sub-groups at recurrence has not yet been defined.
View Article and Find Full Text PDFBrainstem gangliogliomas (GGs), often cannot be resected, have a much poorer prognosis than those located in more common supratentorial sites and may benefit from novel therapeutic approaches. Therapeutically targetable BRAF c.1799T>A (p.
View Article and Find Full Text PDFDespite increasing evidence that antitumor immune control exists in the pediatric brain, these findings have yet to be exploited successfully in the clinic. A barrier to development of immunotherapeutic strategies in pediatric brain tumors is that the immunophenotype of these tumors' microenvironment has not been defined. To address this, the current study used multicolor FACS of disaggregated tumor to systematically characterize the frequency and phenotype of infiltrating immune cells in the most common pediatric brain tumor types.
View Article and Find Full Text PDFPrognostic factors in pilocytic astrocytomas (PAs) and pilomyxoid astrocytomas (PMAs) include extent of resection, location, and age, but no molecular markers have been established. Insulin-like growth factor 2 mRNA binding protein 3 (IMP3, IGF2BP3) is predictive of an unfavorable prognosis in other tumors, including high-grade astrocytomas, but its role in PA/PMA is unknown. This study aimed to determine the expression and prognostic value of IMP3 in pediatric PA/PMAs.
View Article and Find Full Text PDFBRAF V600E mutation has been identified in up to 2/3 of pleomorphic xanthoastrocytomas (PXAs), World Health Organization grade II, as well as in varying percentages of PXAs with anaplastic features (PXA-A), gangliogliomas, extracerebellar pilocytic astrocytomas, and, rarely, giant cell glioblastoma multiforme (GC-GBMs). GC-GBMs and epithelioid GBMs (E-GBMs) can be histologically challenging to distinguish from PXA-A. We undertook this study specifically to address whether these 2 tumor types also showed the mutation.
View Article and Find Full Text PDFBackground: Rhabdoid tumors (RTs) are aggressive tumors of early childhood that occur most often in brain (AT/RTs) or kidney (KRTs). Regardless of location, they are characterized by loss of functional SMARCB1 protein, a component of the SWI/SNF chromatin remodeling complex. The aim of this study was to determine genes and biological process dysregulated in common to both AT/RTs and KRTs.
View Article and Find Full Text PDFAberrant expression of microRNAs has been implicated in many cancers. We recently demonstrated differential expression of several microRNAs in medulloblastoma. In this study, the regulation and function of microRNA 218 (miR-218), which is significantly underexpressed in medulloblastoma, was evaluated.
View Article and Find Full Text PDFIntroduction: Overexpression of the Polycomb repressive complex 2 (PRC2) subunit Enhancer of Zeste 2 (EZH2) occurs in several malignancies, including prostate cancer, breast cancer, medulloblastoma, and glioblastoma multiforme. Recent evidence suggests that EZH2 may also have a role in rhabdoid tumors. Atypical teratoid/rhabdoid tumor (ATRT) is a rare, high-grade embryonal brain tumor that occurs most commonly in young children and carries a very poor prognosis.
View Article and Find Full Text PDF