ALS is a fatal paralytic disorder characterized by a progressive loss of spinal cord motor neurons. Herein, we show that NADPH oxidase, the main reactive oxygen species-producing enzyme during inflammation, is activated in spinal cords of ALS patients and in spinal cords in a genetic animal model of this disease. We demonstrate that inactivation of NADPH oxidase in ALS mice delays neurodegeneration and extends survival.
View Article and Find Full Text PDFMultiple levels of neuron-astrocyte interactions do exist at glutamatergic synapses, glial glutamate transporters being involved in most of them. Inactivation of synaptically released glutamate is not only important for the phasic aspect of glutamatergic transmission but also for astrocyte metabolism, which supply neurons with different metabolic precursors, and for cell survival in the central nervous system. Alteration of glutamate transport, which leads to abnormally high extracellular glutamate levels, has been involved in numerous neurodegenerative diseases.
View Article and Find Full Text PDF