Diabetes mellitus (DM), is a chronic disorder characterized by impaired glucose homeostasis that results from the loss or dysfunction of pancreatic β-cells leading to type 1 diabetes (T1DM) and type 2 diabetes (T2DM), respectively. Pancreatic β-cells rely to a great degree on their endoplasmic reticulum (ER) to overcome the increased secretary need for insulin biosynthesis and secretion in response to nutrient demand to maintain glucose homeostasis in the body. As a result, β-cells are potentially under ER stress following nutrient levels rise in the circulation for a proper pro-insulin folding mediated by the unfolded protein response (UPR), underscoring the importance of this process to maintain ER homeostasis for normal β-cell function.
View Article and Find Full Text PDFViruses
January 2024
Objectives: Hepatitis B virus (HBV) infection remains a public health threat in middle- and low-income countries, where mother-to-child transmission plays an important role. The aim of this study was to assess the burden of this infection among pregnant women in southern Gabon and the risk of vertical transmission.
Methods: The study was a prospective investigation conducted from April 2021 to January 2022.
Metabolic stress involved in several dysregulation disorders such as type 2 diabetes mellitus (T2DM) results in down regulation of several heat shock proteins (HSPs) including DNAJB3. This down regulation of HSPs is associated with insulin resistance (IR) and interventions which induce the heat shock response (HSR) help to increase the insulin sensitivity. Metabolic stress leads to changes in signaling pathways through increased activation of both c-jun N-terminal kinase-1 (JNK1) and the inhibitor of κB inflammatory kinase (IKKβ) which in turn leads to inactivation of insulin receptor substrates 1 and 2 (IRS-1 and IRS-2).
View Article and Find Full Text PDFDiabetes mellitus (DM), currently affecting more than 537 million people worldwide is a chronic disease characterized by impaired glucose metabolism resulting from a defect in insulin secretion, action, or both due to the loss or dysfunction of pancreatic β cells. Since cadaveric islet transplantation using Edmonton protocol has served as an effective intervention to restore normoglycaemia in T1D patients for months, stem cell-derived β cells have been explored for cell replacement therapy for diabetes. Thus, great effort has been concentrated by scientists on developing in vitro differentiation protocols to realize the therapeutic potential of hPSC-derived β cells.
View Article and Find Full Text PDFFront Med (Lausanne)
May 2022
Since the onset of the COVID-19 pandemic, the SARS-CoV-2 viral dynamics in Africa have been less documented than on other continents. In Gabon, a Central African country, a total number of 37,511 cases of COVID-19 and 281 deaths have been reported as of December 8, 2021. After the first COVID-19 case was reported on March 12, 2020, in the capital Libreville, the country experienced two successive waves.
View Article and Find Full Text PDFDiabetes mellitus (DM), currently affecting 463 million people worldwide is a chronic disease characterized by impaired glucose metabolism resulting from the loss or dysfunction of pancreatic β-cells with the former preponderating in type 1 diabetes (T1DM) and the latter in type 2 diabetes (T2DM). Because impaired insulin secretion due to dysfunction or loss of pancreatic β-cells underlies different types of diabetes, research has focused its effort towards the generation of pancreatic β-cells from human pluripotent stem cell (hPSC) as a potential source of cells to compensate for insulin deficiency. However, many protocols developed to differentiate hPSCs into insulin-expressing β-cells in vitro have generated hPSC-derived β-cells with either immature phenotype such as impaired glucose-stimulated insulin secretion (GSIS) or a weaker response to GSIS than cadaveric islets.
View Article and Find Full Text PDFHigh-fat diets (HFD) have been shown to induce substantial shifts in intestinal microbial community composition and activity which are associated with adverse metabolic outcomes. Furthermore, changes in microbial composition are affected by fatty acid composition; saturated, monounsaturated (MUFA), and industrial trans fats (iTFA) adversely affect microbial diversity while polyunsaturated fats (PUFA) have been shown to have neutral effects. The effects of naturally occurring trans fats on gut microbial composition are unknown.
View Article and Find Full Text PDFInsulin resistance (IR) underpins a wide range of metabolic disorders including type 2 diabetes (T2D), metabolic syndrome and cardiovascular diseases. IR is characterized by a marked reduction in the magnitude and/or delayed onset of insulin to stimulate glucose disposal. This condition is due to defects in one or several intracellular intermediates of the insulin signaling cascade, ranging from insulin receptor substrate (IRS) inactivation to reduced glucose phosphorylation and oxidation.
View Article and Find Full Text PDFType 1 diabetes (T1D) is a T-cell mediated autoimmune disease characterized by recognition of pancreatic β-cell proteins as self-antigens, called autoantigens (AAgs), followed by loss of pancreatic β-cells. (Pre-)proinsulin ([P]PI), glutamic acid decarboxylase (GAD), tyrosine phosphatase IA-2, and the zinc transporter ZnT8 are key molecules in T1D pathogenesis and are recognized by autoantibodies detected in routine clinical laboratory assays. However, generation of new autoantigens (neoantigens) from β-cells has also been reported, against which the autoreactive T cells show activity.
View Article and Find Full Text PDFBackground: The projected UNAIDS goal of ending AIDS by 2030 requires significant global efforts to improve current and future ART strategies. In this study, we assessed viral load (VL) suppression and acquired drug resistance, as well as future efficacy of dolutegravir-based combinations for patients living in semi-rural regions of Gabon.
Methods: Eligible study participants were adults receiving ART and recruited between 2018 and 2019 in Franceville, Gabon.
Persistent ER stress, mitochondrial dysfunction and failure of the heat shock response (HSR) are fundamental hallmarks of insulin resistance (IR); one of the early core metabolic aberrations that leads to type 2 diabetes (T2D). The antioxidant α-lipoic acid (ALA) has been shown to attenuate metabolic stress and improve insulin sensitivity in part through activation of the heat shock response (HSR). However, these studies have been focused on a subset of heat shock proteins (HSPs).
View Article and Find Full Text PDFLow birth weight (LBW) and postnatal nutrition are risk factors for adult metabolic diseases. However, the interactions between LBW, diet, and intestinal lipid absorption and secretion leading to adult metabolic disease remain unclear. The current study determined the impact of LBW on intestinal lipid and carbohydrate metabolism under both control and Western diet (high fat, high fructose, and cholesterol) conditions in 5-wk-old LBW and normal birth weight (NBW) Landrace-Large White × Duroc pigs.
View Article and Find Full Text PDFFailure of the heat shock response is a key event that leads to insulin resistance and type 2 diabetes. We recently showed that DNAJB3 co-chaperone is downregulated in obese and diabetic patients and that physical exercise restores its normal expression with a significant improvement of the clinical outcomes. In 3T3-L1 adipocytes, DNAJB3 has a role in improving the sensitivity to insulin and glucose uptake.
View Article and Find Full Text PDFObesity and its metabolic complications have emerged as the epidemic of the new millennia. The use of obese rodent models continues to be a productive component of efforts to understand the concomitant metabolic complications of this disease. In 1978, the rat model was developed with an autosomal recessive corpulent () trait resulting from a premature stop codon in the extracellular domain of the leptin receptor.
View Article and Find Full Text PDFThe main dietary sources of trans fatty acids are partially hydrogenated vegetable oils (PHVO), and products derived from polyunsaturated fatty acid biohydrogenation (PUFA-BHP) in ruminants. Trans fatty acid intake has historically been associated with negative effects on health, generating an anti-trans fat campaign to reduce their consumption. The profiles and effects on health of PHVO and PUFA-BHP can, however, be quite different.
View Article and Find Full Text PDFVaccenic acid (VA), the predominant ruminant-derivedtransfat in the food chain, ameliorates hyperlipidemia, yet mechanisms remain elusive. We investigated whether VA could influence tissue endocannabinoids (ECs) by altering the availability of their biosynthetic precursor, arachidonic acid (AA), in membrane phospholipids (PLs). JCR:LA-cprats were assigned to a control diet with or without VA (1% w/w),cis-9,trans-11 conjugated linoleic acid (CLA) (1% w/w) or VA+CLA (1% + 0.
View Article and Find Full Text PDFPolycystic ovary syndrome (PCOS) is one of the most common endocrine-metabolic disorders in women of reproductive age characterized by ovulatory dysfunction, hyperandrogenism and cardiometabolic risk. The overweight-obese PCOS phenotype appears to have exacerbated reproductive dysfunction and cardiometabolic risk. In overweight-obese adult women with PCOS, exercise and energy restricted diets have shown limited and inconsistent effects on both cardiometabolic indices and reproductive outcomes.
View Article and Find Full Text PDF