One of the outcomes from the global COVID-19 pandemic caused by SARS-CoV-2 has been an acceleration of development timelines to provide treatments in a timely manner. For example, it has recently been demonstrated that the development of monoclonal antibody therapeutics from vector construction to IND submission can be achieved in five to six months rather than the traditional ten-to-twelve-month timeline using CHO cells [1], [2]. This timeline is predicated on leveraging existing, robust platforms for upstream and downstream processes, analytical methods, and formulation.
View Article and Find Full Text PDFFor mammalian cell-derived recombinant biotherapeutics, controlling host cell DNA levels below a threshold is a regulatory requirement to ensure patient safety. DNA removal during drug substance manufacture is accomplished by a series of chromatography-based purification steps and a qPCR-based analytical method is most used to measure DNA content in the purified drug substance to enable material disposition. While the qPCR approach is mature and its application to DNA measurement is widespread in the industry, it is susceptible to trace levels of process-related contaminants that are carried forward.
View Article and Find Full Text PDFBispecific protein scaffolds can be more complex than traditional monoclonal antibodies (MAbs) because two different sites/domains for epitope binding are needed. Because of this increased molecular complexity, bispecific molecules are difficult to express and can be more prone to physical and chemical degradation compared to MAbs, leading to higher levels of protein aggregates, clipped species, or modified residues in cell culture. In this study, we investigated cell culture performance for the production of three types of bispecific molecules developed at Amgen.
View Article and Find Full Text PDF