We introduce an exact-two-component complete active space self-consistent-field (X2C-CASSCF) method formulated under the restricted-magnetic-balance condition. This framework allows for the nonperturbative treatment of static magnetic fields using gauge-including atomic orbitals (GIAOs). The GIAO-X2C-CASSCF methodology effectively captures all microstates within the same 2 + 1-degenerate manifold and their splitting in a static magnetic field, which are not accessible through single-reference-based methods.
View Article and Find Full Text PDFSpinal Cord Injury (SCI) is a severe condition that often leads to substantial neurological impairments. This study aimed to explore the role of Aquaporin-4 (AQP4) in regulating astrocyte autophagy and neuroinflammation post-SCI, as well as to evaluate the therapeutic potential of AQP4 inhibition using the specific inhibitor TGN-020. Using Western blot, CCK8 assays, immunofluorescence staining, histopathological assessments, and behavioral analyses, we investigated the effects of TGN-020 on SCI-induced alterations in autophagy, neuroinflammation, astrocyte proliferation, neuronal damage, and motor function recovery in both rat and astrocyte models.
View Article and Find Full Text PDFNumerical integration of the exchange-correlation potential is an inherently parallel problem that can be significantly accelerated by graphical processing units (GPUs). In this Letter, we present the first implementation of GPU-accelerated exchange-correlation potential in the GauXC library for relativistic, 2-component density functional theory. By benchmarking against copper, silver, and gold coinage metal clusters, we demonstrate the speed and efficiency of our implementation, achieving significant speedup compared to CPU-based calculations.
View Article and Find Full Text PDFThe direct probing of photochemical dynamics by detecting the electronic coherence generated during passage through conical intersections is an intriguing challenge. The weak coherence signal and the difficulty in preparing purely excited wave packets that exclude coherence from other sources make it experimentally challenging. We propose to use time-resolved X-ray magnetic circular dichroism to probe the wave packet dynamics around the conical intersection.
View Article and Find Full Text PDFConical intersections (CIs) are pivotal in many photochemical processes. Traditional quantum chemistry methods, such as the state-average multiconfigurational methods, face computational hurdles in solving the electronic Schrödinger equation within the active space on classical computers. While quantum computing offers a potential solution, its feasibility in studying CIs, particularly on real quantum hardware, remains largely unexplored.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2022
The mixed quantum-classical dynamical simulation is essential for studying nonadiabatic phenomena in photophysics and photochemistry. In recent years, many machine learning models have been developed to accelerate the time evolution of the nuclear subsystem. Herein, we implement long short-term memory (LSTM) networks as a propagator to accelerate the time evolution of the electronic subsystem during the fewest-switches surface hopping (FSSH) simulations.
View Article and Find Full Text PDFPhys Chem Chem Phys
June 2021
The quantitative prediction of nonadiabatic transitions between different electronic states is important to understand ultrafast processes in photochemistry. A variety of mixed quantum-classical molecular dynamics methods such as surface hopping and Ehrenfest mean-field have been developed. However, how to choose an appropriate one from a wide diversity of dynamics algorithms to study a realistic photochemical process is still unclear.
View Article and Find Full Text PDFIn the present work, the quantum trajectory mean-field approach, which is able to overcome the overcoherence problem, was generalized to simulate internal conversion and intersystem crossing processes simultaneously. The photoinduced ring-opening and subsequent rearrangement reactions of isolated 2(5H)-thiophenone were studied based on geometry optimizations on critical structures and nonadiabatic dynamics simulations using this method. Upon 267 nm irradiation, the molecule is initially populated in the 1ππ* state.
View Article and Find Full Text PDFThe mixed quantum-classical dynamical approaches have been widely used to study nonadiabatic phenomena in photochemistry and photobiology, in which the time evolutions of the electronic and nuclear subsystems are treated based on quantum and classical mechanics, respectively. The key issue is how to deal with coherence and decoherence during the propagation of the two subsystems, which has been the subject of numerous investigations for a few decades. A brief description on Ehrenfest mean-field and surface-hopping (SH) methods is first provided, and then different algorithms for treatment of quantum decoherence are reviewed in the present paper.
View Article and Find Full Text PDFThe semiclassical approaches such as the Meyer-Miller mapping Hamiltonian in conjunction with the symmetrical quasi-classical windowing (MM/SQC) method have been widely used to study nonadiabatic processes in photochemistry but still limited to model Hamiltonians. In this work we implemented the MM/SQC method combined with electronic structure calculations at the level of OM2/MRCI and the on-the-fly nonadiabatic dynamics simulations. The two-state-involved photoisomerization process of cis-azobenzene is employed as a realistic molecular system for validation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2018
Raising the light absorption of the photoactive layer in polymer solar cells (PSCs) without increasing the layer thickness is desirable but challenging because of the low carrier mobility of organic materials. Herein, we used the coupled localized surface plasmon resonance of heterostructured Au-CuS nanocrystals (NCs) to improve the light-trapping capability of the photoactive layer of PSCs. Broadband light absorption and a considerable improvement of the power conversion efficiency were obtained when the photoactive layer was doped with a tiny amount of NCs.
View Article and Find Full Text PDF