Mayo Clin Proc Innov Qual Outcomes
October 2024
Objective: To assess the performance of known survival predictors and evaluate their stratification capability in patients with amyotrophic lateral sclerosis (ALS).
Patients And Methods: We analyzed demographic and clinical variables collected at the Mayo Clinic, Florida ALS center during the first clinical visit of 1442 (100%) patients with ALS.
Results: Our cohort had a median (interquartile range [IQR]) age at diagnosis of 64.
Introduction: In the evolving landscape of healthcare and medicine, the merging of extensive medical datasets with the powerful capabilities of machine learning (ML) models presents a significant opportunity for transforming diagnostics, treatments, and patient care.
Methods: This research paper delves into the realm of data-driven healthcare, placing a special focus on identifying the most effective ML models for diabetes prediction and uncovering the critical features that aid in this prediction. The prediction performance is analyzed using a variety of ML models, such as Random Forest (RF), XG Boost (XGB), Linear Regression (LR), Gradient Boosting (GB), and Support VectorMachine (SVM), across numerousmedical datasets.
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) share many clinical, pathological, and genetic features, but a detailed understanding of their associated transcriptional alterations across vulnerable cortical cell types is lacking. Here, we report a high-resolution, comparative single-cell molecular atlas of the human primary motor and dorsolateral prefrontal cortices and their transcriptional alterations in sporadic and familial ALS and FTLD. By integrating transcriptional and genetic information, we identify known and previously unidentified vulnerable populations in cortical layer 5 and show that ALS- and FTLD-implicated motor and spindle neurons possess a virtually indistinguishable molecular identity.
View Article and Find Full Text PDFImage data has grown exponentially as systems have increased their ability to collect and store it. Unfortunately, there are limits to human resources both in time and knowledge to fully interpret and manage that data. Computer Vision (CV) has grown in popularity as a discipline for better understanding visual data.
View Article and Find Full Text PDFTotal joint arthroplasty is becoming one of the most common surgeries within the United States, creating an abundance of analyzable data to improve patient experience and outcomes. Unfortunately, a large majority of this data is concealed in electronic health records only accessible by manual extraction, which takes extensive time and resources. Natural language processing (NLP), a field within artificial intelligence, may offer a viable alternative to manual extraction.
View Article and Find Full Text PDFBackground: Artificial intelligence is a revolutionary technology that promises to assist clinicians in improving patient care. In radiology, deep learning (DL) is widely used in clinical decision aids due to its ability to analyze complex patterns and images. It allows for rapid, enhanced data, and imaging analysis, from diagnosis to outcome prediction.
View Article and Find Full Text PDFThe growth of artificial intelligence combined with the collection and storage of large amounts of data in the electronic medical record collection has created an opportunity for orthopedic research and translation into the clinical environment. Machine learning (ML) is a type of artificial intelligence tool well suited for processing the large amount of available data. Specific areas of ML frequently used by orthopedic surgeons performing total joint arthroplasty include tabular data analysis (spreadsheets), medical imaging processing, and natural language processing (extracting concepts from text).
View Article and Find Full Text PDFMinimizing bias is critical to adoption and implementation of machine learning (ML) in clinical practice. Systematic mathematical biases produce consistent and reproducible differences between the observed and expected performance of ML systems, resulting in suboptimal performance. Such biases can be traced back to various phases of ML development: data handling, model development, and performance evaluation.
View Article and Find Full Text PDFThe increasing use of machine learning (ML) algorithms in clinical settings raises concerns about bias in ML models. Bias can arise at any step of ML creation, including data handling, model development, and performance evaluation. Potential biases in the ML model can be minimized by implementing these steps correctly.
View Article and Find Full Text PDFBackground: Establishing imaging registries for large patient cohorts is challenging because manual labeling is tedious and relying solely on DICOM (digital imaging and communications in medicine) metadata can result in errors. We endeavored to establish an automated hip and pelvic radiography registry of total hip arthroplasty (THA) patients by utilizing deep-learning pipelines. The aims of the study were (1) to utilize these automated pipelines to identify all pelvic and hip radiographs with appropriate annotation of laterality and presence or absence of implants, and (2) to automatically measure acetabular component inclination and version for THA images.
View Article and Find Full Text PDF