Oxidative stress has been implicated as a key trigger of neuronal apoptosis in stroke and neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. The Bcl-2 homology 3 (BH3)-only subfamily of Bcl-2 genes consists of multiple members that can be activated in a cell-type- and stimulus-specific manner to promote cell death. In the present study, we demonstrate that, in cortical neurons, oxidative stress induces the expression of the BH3-only members Bim, Noxa, and Puma.
View Article and Find Full Text PDFThe ATP-sensitive potassium (KATP) channel couples membrane excitability to cellular metabolism and is a critical mediator in the process of glucose-stimulated insulin secretion. Increasing numbers of KATP channel polymorphisms are being described and linked to altered insulin secretion indicating that genes encoding this ion channel could be susceptibility markers for type-2 diabetes. Genetic variation of KATP channels may result in altered beta-cell electrical activity, glucose homeostasis, and increased susceptibility to type-2 diabetes.
View Article and Find Full Text PDFThe commonly occurring E23K and I337V Kir6.2 polymorphisms in the ATP-sensitive potassium (KATP) channel are more frequent in Caucasian type 2 diabetic populations. However, the underlying cellular mechanisms contributing to the pathogenesis of type 2 diabetes remain uncharacterized.
View Article and Find Full Text PDF