Drought predisposes forest trees to bark beetle-induced mortality, but the physiological mechanisms remain unclear. While drought-induced water and carbon limitations have been implicated in defensive failure and tree susceptibility, evidence demonstrating how these factors interact is scarce. We withheld water from mature, potted Pinus edulis and subsequently applied a double-stem girdle to inhibit carbohydrate transport from the crown and roots.
View Article and Find Full Text PDFStomatal closure during drought inhibits carbon uptake and may reduce a tree's defensive capacity. Limited carbon availability during drought may increase a tree's mortality risk, particularly if drought constrains trees' capacity to rapidly produce defenses during biotic attack. We parameterized a new model of conifer defense using physiological data on carbon reserves and chemical defenses before and after a simulated bark beetle attack in mature Pinus edulis under experimental drought.
View Article and Find Full Text PDFGlobal declines in tree populations have led to dramatic shifts in forest ecosystem composition, biodiversity, and functioning. These changes have consequences for both forest plant and wildlife communities, particularly when declining species are involved in coevolved mutualisms. Whitebark pine () is a declining keystone species in western North American high-elevation ecosystems and an obligate mutualist of Clark's nutcracker (), an avian seed predator and disperser.
View Article and Find Full Text PDFBy-product mutualisms are ubiquitous yet seldom considered in models of mutualism. Most models represent conditional mutualisms that shift between mutualism and antagonism in response to shifts in costs and benefits resulting from changes in environmental quality. However, in by-product mutualisms, benefits arise as a part of normal life processes that may be costly to produce but incur little-to-no additional costs in response to the interaction.
View Article and Find Full Text PDFIntensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity-ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch β-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, β-, and γ-scales in real landscapes at a forest management-relevant scale.
View Article and Find Full Text PDFForest fire is known to positively affect bark beetle populations by providing fire-damaged trees with impaired defenses for infestation. Tomicus piniperda, the common pine shoot beetle, breeds and lays eggs under the bark of stressed pine trees and is considered a serious forest pest within its native range. Wood-colonizing fungi have been hypothesized to improve substrate quality and detoxify tree defensive chemistry to indirectly facilitate tree colonization by beetles.
View Article and Find Full Text PDFSymbiosis between insects and fungi arose multiple times during the evolution of both groups, and some of the most biologically diverse and economically important are mutualisms in which the insects cultivate and feed on fungi. Among these are bark beetles, whose ascomycetous cultivars are better known and studied than their frequently-overlooked and poorly understood basidiomycetous partners. In this study, we propose five new species of , fungal mutualists in the Russulales () that are mutualistic symbionts of scolytine beetles.
View Article and Find Full Text PDFContext dependency occurs when biological interactions shift in sign or magnitude depending upon genetic, abiotic, and biotic context. Most models of mutualism address systems where interaction outcomes slide along a mutualism-antagonism continuum as environmental conditions vary altering cost-benefit relationships. However, these models do not apply to the many mutualisms that involve by-product benefits and others that do not have antagonistic alternate states.
View Article and Find Full Text PDFFungus-farming within galleries in the xylem of trees has evolved independently in at least twelve lineages of weevils (Curculionidae: Scolytinae, Platypodinae) and one lineage of ship-timber beetles (Lymexylidae). Jointly these are termed ambrosia beetles because they actively cultivate nutritional "ambrosia fungi" as their main source of food. The beetles are obligately dependent on their ambrosia fungi as they provide them a broad range of essential nutrients ensuring their survival in an extremely nutrient-poor environment.
View Article and Find Full Text PDFBark beetles form a variety of symbioses with fungi. Recent studies reveal how the fungi influence beetle nutrition and detoxify tree defenses and provide insight into why these symbioses vary so greatly in their outcomes, not only for host and symbiont, but also for the forest ecosystems within which they exist. Here, I review recent advances in our knowledge of these systems.
View Article and Find Full Text PDFTree-killing bark beetles are the most economically important insects in conifer forests worldwide. However, despite >200 years of research, the drivers of population eruptions and crashes are still not fully understood and the existing knowledge is thus insufficient to face the challenges posed by the Anthropocene. We critically analyze potential biotic and abiotic drivers of population dynamics of an exemplary species, the European spruce bark beetle (ESBB) (Ips typographus) and present a multivariate approach that integrates the many drivers governing this bark beetle system.
View Article and Find Full Text PDFIncreased mortality of forest trees, driven directly or indirectly by climate change, is occurring around the world. In western North America, whitebark pine, a high elevation keystone species, and lodgepole pine, a widespread ecologically and economically important tree, have experienced extensive mortality in recent climate-driven outbreaks of the mountain pine beetle. However, even in stands experiencing high levels of mortality, some mature trees have survived.
View Article and Find Full Text PDFEuphorbia ingens trees have been dying in large numbers in the Limpopo Province of South Africa for approximately 15 years. The ambrosia beetle Cyrtogenius africus is often found infesting diseased and dying trees. The aim of this study was to identify the ophiostomatoid fungi occurring in the galleries of C.
View Article and Find Full Text PDFExotic tree pathogens can cause devastating ecological effects on forests that can be exacerbated when infections increase the likelihood of attack by insects. Current high rates of mortality of whitebark pine (Pinus albicaulis Engelm.) are due to white pine blister rust caused by the exotic fungus, Cronartium ribicola J.
View Article and Find Full Text PDFThe mountain pine beetle, Dendroctonus ponderosae, depends on two fungi, Grosmannia clavigera and Ophiostoma montium, to augment a nutrient-poor woody food resource. Because the two fungi exert differential effects on the host beetle, temperature-driven differences in fungal growth and competition outcomes have a strong potential to influence host population dynamics. Weisolated fungi from beetles and wood from three locations in Montana and Utah, USA, and measured their growth rates and sporulation between 5 and 35 °C on artificial media.
View Article and Find Full Text PDFThe fates of individual species are often tied to synchronization of phenology, however, few methods have been developed for integrating phenological models involving linked species. In this paper, we focus on mountain pine beetle (MPB, Dendroctonus ponderosae) and its two obligate mutualistic fungi, Grosmannia clavigera and Ophiostoma montium. Growth rates of all three partners are driven by temperature, and their idiosyncratic responses affect interactions at important life stage junctures.
View Article and Find Full Text PDFWhether and how mutualisms are maintained through ecological and evolutionary time is a seldom studied aspect of bark beetle-fungal symbioses. All bark beetles are associated with fungi and some species have evolved structures for transporting their symbiotic partners. However, the fungal assemblages and specificity in these symbioses are not well known.
View Article and Find Full Text PDFAll higher organisms are involved in symbioses with microbes. The importance of these partnerships has led to the concept of the holobiont, defined as the animal or plant with all its associated microbes. Indeed, the interactions between insects and symbionts form much of the basis for the success and diversity of this group of arthropods.
View Article and Find Full Text PDFInsect fungus gardens consist of a community of interacting microorganisms that can have either beneficial or detrimental effects to the farmers. In contrast to fungus-farming ants and termites, the fungal communities of ambrosia beetles and the effects of particular fungal species on the farmers are largely unknown. Here, we used a laboratory rearing technique for studying the filamentous fungal garden community of the ambrosia beetle, Xyleborinus saxesenii, which cultivates fungi in tunnels excavated within dead trees.
View Article and Find Full Text PDFEctosymbioses among bark beetles (Curculionidae, Scolytinae) and fungi (primarily ophiostomatoid Ascomycetes) are widespread and diverse. Associations range from mutualistic to commensal, and from facultative to obligate. Some fungi are highly specific and associated only with a single beetle species, while others can be associated with many.
View Article and Find Full Text PDFGondwanamyces and its Custingophora anamorphs were first described from Protea infructescences in South Africa. Subsequently these unusual fungi were also found on Cecropia in Central America. During an investigation into the decline and death of native Euphorbia trees in South Africa, several fungal isolates resembling the anamorph state of Gondwanamyces were obtained from diseased tissues.
View Article and Find Full Text PDFThe introduction of nonnative pathogens is altering the scale, magnitude, and persistence of forest disturbance regimes in the western United States. In the high-altitude whitebark pine (Pinus albicaulis) forests of the Greater Yellowstone Ecosystem (GYE), white pine blister rust (Cronartium ribicola) is an introduced fungal pathogen that is now the principal cause of tree mortality in many locations. Although blister rust eradication has failed in the past, there is nonetheless substantial interest in monitoring the disease and its rate of progression in order to predict the future impact of forest disturbances within this critical ecosystem.
View Article and Find Full Text PDFGrosmannia clavigera is a fungal pathogen of pine forests in western North America and a symbiotic associate of two sister bark beetles: Dendroctonus ponderosae and D. jeffreyi. This fungus and its beetle associate D.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
August 2011
Bark beetles are well known vectors of ophiostomatoid fungi including species of Ophiostoma, Grosmannia and Ceratocystis. In this study, the most common ophiostomatoid fungi associated with the lodgepole pine beetle, Dendroctonus murrayanae, were characterized. Pre-emergent and post-attack adult beetles were collected from lodgepole pines at four sites in British Columbia, Canada.
View Article and Find Full Text PDF