To establish a patient-centered agenda for research that will lead to effective, widespread availability, adoption, and utilization of evidence-based behavioral treatment of Tourette syndrome and other tic disorders (TDs), we planned and executed a multistage, collaborative "Treating Tourette Together" research planning project with researchers, clinicians, patients, families, and other interested parties. Priorities for future behavioral treatment research were solicited from these parties via anonymous community surveys, a 2-day research planning summit with 46 individuals representing key stakeholder groups, and community response to summit reports. Four high-priority research domains were identified: (a) expanding treatment access, (b) improving treatment outcomes, (c) optimizing treatment within a broader care model, and (d) evaluating outcomes beyond tic severity.
View Article and Find Full Text PDFJ Dev Behav Pediatr
September 2020
Recent population studies suggest an intriguing inverse relationship between several types of cancer and neurodegenerative diseases, including Alzheimer's disease. Understanding the intersection of the underlying biology for these two distinct families of diseases with one another may offer novel approaches to identify new therapeutic approaches and possible opportunities to repurpose existing drug candidates. The Alzheimer's Association and the Alzheimer's Drug Discovery Foundation convened a one-day workshop to delve into this discussion.
View Article and Find Full Text PDFThe reproducibility of laboratory experiments is fundamental to the scientific process. There have been increasing reports regarding challenges in reproducing and translating preclinical experiments in animal models. In Alzheimer's disease and related dementias, there have been similar reports and growing interest from funding organizations, researchers, and the broader scientific community to set parameters around experimental design, statistical power, and reporting requirements.
View Article and Find Full Text PDFSports-related concussions and repetitive subconcussive exposure are increasingly recognized as potential dangers to paediatric populations, but much remains unknown about the short-term and long-term consequences of these events, including potential cognitive impairment and risk of later-life dementia. This Expert Consensus Document is the result of a 1-day meeting convened by Safe Kids Worldwide, the Alzheimer's Drug Discovery Foundation, and the Andrews Institute for Orthopaedics and Sports Medicine. The goal is to highlight knowledge gaps and areas of critically needed research in the areas of concussion science, dementia, genetics, diagnostic and prognostic biomarkers, neuroimaging, sports injury surveillance, and information sharing.
View Article and Find Full Text PDFRepurposing Food and Drug Administration (FDA)-approved drugs for a new indication may offer an accelerated pathway for new treatments to patients but is also fraught with significant commercial, regulatory, and reimbursement challenges. The Alzheimer's Drug Discovery Foundation (ADDF) and the Michael J. Fox Foundation for Parkinson's Research (MJFF) convened an advisory panel in October 2013 to understand stakeholder perspectives related to repurposing FDA-approved drugs for neurodegenerative diseases.
View Article and Find Full Text PDFWorldwide, over 35 million people suffer from Alzheimer's disease and related dementias. This number is expected to triple over the next 40 years. How can we improve the evidence supporting strategies to reduce the rate of dementia in future generations? The risk of dementia is likely influenced by modifiable factors such as exercise, cognitive activity, and the clinical management of diabetes and hypertension.
View Article and Find Full Text PDFAlzheimer's disease is the public health crisis of the 21st century. There is a clear need for a widely available, inexpensive and reliable method to diagnosis Alzheimer's disease in the earliest stages, track disease progression, and accelerate clinical development of new therapeutics. One avenue of research being explored is blood based biomarkers.
View Article and Find Full Text PDFIncreased knowledge of the biology of synaptic function has led to the development of novel cognitive-enhancing therapeutic strategies with the potential for increased efficacy and safety. This editorial highlights a diverse array of approaches currently being explored to target cognitive dysfunction due to aging and/or Alzheimer's disease.
View Article and Find Full Text PDFThe Alzheimer's Drug Discovery Foundation's 13th International Conference on Alzheimer's Drug Discovery was held on 10-11 September 2012 in Jersey City, NJ, USA. This meeting report provides an overview of Alzheimer's Drug Discovery Foundation-funded programs, ranging from novel biomarkers to accelerate clinical development to drug-discovery programs with a focus on targets related to neuroprotection, mitochondrial function, apolipoprotein E and vascular biology.
View Article and Find Full Text PDFCurrently, the field is awaiting the results of several pivotal Phase III clinical Alzheimer's disease (AD) trials that target amyloid-β (Aβ). In light of the recent biomarker studies that indicate Aβ levels are at their most dynamic 5-10 years before the onset of clinical symptoms, it is becoming uncertain whether direct approaches to target Aβ will achieve desired clinical efficacy. AD is a complex neurodegenerative disease caused by dysregulation of numerous neurobiological networks and cellular functions, resulting in synaptic loss, neuronal loss, and ultimately impaired memory.
View Article and Find Full Text PDFAlthough the molecular mechanisms underlying the pathogenesis of Alzheimer's disease and other related neurodegenerative diseases remain unclear, accumulation of misfolded proteins, neuroinflammation, mitochondrial dysfunction and perturbed calcium homeostasis have been identified as key events leading to neuronal loss during neurodegeneration. Evidence for 'druggable' targets for each of these key mechanisms was presented by the Alzheimer's Drug Discovery Foundation-funded investigators at the 12th International Conference on Alzheimer's Drug Discovery, Jersey City, NJ, 26-27 September 2011 http://www.worldeventsforum.
View Article and Find Full Text PDFAnimal models have contributed significantly to our understanding of the underlying biological mechanisms of Alzheimer's disease (AD). As a result, over 300 interventions have been investigated and reported to mitigate pathological phenotypes or improve behavior in AD animal models or both. To date, however, very few of these findings have resulted in target validation in humans or successful translation to disease-modifying therapies.
View Article and Find Full Text PDFBackground: To better understand the status of frontotemporal dementia (FTD) research, and identify opportunities to accelerate translational research, we analyzed international funding for FTD and related dementias between 1998 and 2008.
Methods: Search terms were compiled to define the clinical spectrum of FTD and all known mechanisms. Funders were asked to return grants that contained these search terms in the title or abstract.
While Alzheimer's disease researchers continue to debate the underlying cause(s) of the disease, most agree that a diverse, multi-target approach to treatment will be necessary. To this end, the Alzheimer's Drug Discovery Foundation (ADDF) recently hosted the 11th International Conference on Alzheimer's Drug Discovery to highlight the array of exciting efforts from the ADDF's funded investigators.
View Article and Find Full Text PDFThis review summarizes the scientific talks presented at the conference "Therapeutics for Cognitive Aging," hosted by the New York Academy of Sciences and the Alzheimer's Drug Discovery Foundation on May 15, 2009. Attended by scientists from industry and academia, as well as by a number of lay people-approximately 200 in all-the conference specifically tackled the many aspects of developing therapeutic interventions for cognitive impairment. Discussion also focused on how to define cognitive aging and whether it should be considered a treatable, tractable disease.
View Article and Find Full Text PDFDialogues Clin Neurosci
August 2009
As the world's population continues to age, Alzheimer's disease presents a looming public health crisis that, left unchecked, threatens to overwhelm health care systems throughout the developed world. In order to significantly tackle the most catastrophic and devastating symptom of Alzheimer's disease (AD)--dementia--we must be able to detect the disease prior to the onset of clinical symptoms, and be able to offer patients preventative treatments that block or significantly slow disease progression. This review summarizes a variety of the most promising early detection methods for Alzheimer's disease (AD) and mild cognitive impairment (MCI) that could be used to identify those at high risk of developing the disease and used for monitoring disease progression and response to investigational treatments.
View Article and Find Full Text PDFAmyloid-beta (Abeta) peptides, generated through sequential proteolytic cleavage of amyloid precursor protein (APP), aggregate to form amyloid plaques in Alzheimer's disease (AD). Understanding the regulation of Abeta generation and cellular secretion is critical to our understanding of AD pathophysiology. In the present study, we examined the role of the insulin/insulin-like growth factor-1 (IGF-1) signaling pathway in regulating APP trafficking and Abeta secretion.
View Article and Find Full Text PDFMutations in presenilins (PS) are the major cause of familial Alzheimer's disease (FAD) and have been associated with calcium (Ca2+) signaling abnormalities. Here, we demonstrate that FAD mutant PS1 (M146L)and PS2 (N141I) interact with the inositol 1,4,5-trisphosphate receptor (InsP3R) Ca2+ release channel and exert profound stimulatory effects on its gating activity in response to saturating and suboptimal levels of InsP3. These interactions result in exaggerated cellular Ca2+ signaling in response to agonist stimulation as well as enhanced low-level Ca2+signaling in unstimulated cells.
View Article and Find Full Text PDFAlzheimer's disease (AD) amyloid plaques are composed of amyloid-beta (Abeta) peptides produced from proteolytic cleavage of amyloid precursor protein (APP). Isoprostanes, markers of in vivo oxidative stress, are elevated in AD patients and in the Tg2576 mouse model of AD-like Abeta brain pathology. To determine whether isoprostanes increase Abeta production, we delivered isoprostane iPF(2alpha)-III into the brains of Tg2576 mice.
View Article and Find Full Text PDF