Florida manatees (Trichechus manatus latirostris) and rock hyraxes (Procavia capensis) exhibit expanded tactile arrays of vibrissae that are distributed not only on the face but also on the entire postfacial body. In contrast, the vibrissae of most mammals are principally restricted to the face. These facial vibrissae may be associated with central nervous system representations known as barrels in the cerebral cortex, barreloids in the thalamus, and barrelettes in the trigeminal nuclei of the brainstem.
View Article and Find Full Text PDFThe naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g.
View Article and Find Full Text PDFNaked mole-rats () are subterranean rodents that utilize their incisors for feeding, chisel-tooth digging of complex tunnel systems, social interactions, and defense in their eusocial colony structure. Previous studies have shown that naked mole-rats have morphological and anatomical adaptations that predict strong bite forces, namely, skulls that are relatively tall and wide, in addition to impressive masticatory musculature. However, no studies to date have directly measured bite force in this species or analyzed the relationship between bite force and social caste.
View Article and Find Full Text PDFNaked mole-rats (Heterocephalus glaber) are fossorial, eusocial rodents that exhibit the unusual capability of moving their lower incisors independently in lateral and rostroventral directions. The evolution of this trait would presumably also involve concurrent alterations in neck musculature to support and control movements of the lower incisors. In order to assess morphological adaptations that might facilitate these movements, we performed detailed dissections of the neck musculature of adult naked mole-rats.
View Article and Find Full Text PDFFront Neurosci
February 2017
Exosomes, small lipid bilayer vesicles, are part of the transportable cell secretome that can be taken up by nearby recipient cells or can travel through the bloodstream to cells in distant organs. Selected cellular cytoplasm containing proteins, RNAs, and other macromolecules is packaged into secreted exosomes. This cargo has the potential to affect cellular function in either healthy or pathological ways.
View Article and Find Full Text PDFFor children with autism spectrum disorders (ASDs), social robots are increasingly utilized as therapeutic tools in order to enhance social skills and communication. Robots have been shown to generate a number of social and behavioral benefits in children with ASD including heightened engagement, increased attention, and decreased social anxiety. Although social robots appear to be effective social reinforcement tools in assistive therapies, the perceptual mechanism underlying these benefits remains unknown.
View Article and Find Full Text PDFMammalian tactile hairs are commonly found on specific, restricted regions of the body, but Florida manatees represent a unique exception, exhibiting follicle-sinus complexes (FSCs, also known as vibrissae or tactile hairs) on their entire body. The orders Sirenia (including manatees and dugongs) and Hyracoidea (hyraxes) are thought to have diverged approximately 60 million years ago, yet hyraxes are among the closest relatives to sirenians. We investigated the possibility that hyraxes, like manatees, are tactile specialists with vibrissae that cover the entire postfacial body.
View Article and Find Full Text PDFWe investigated the relationship between body size, brain size, and fibers in selected cranial nerves in shrews and moles. Species include tiny masked shrews (S. cinereus) weighing only a few grams and much larger mole species weighing up to 90 grams.
View Article and Find Full Text PDFWe process information from the world through multiple senses, and the brain must decide what information belongs together and what information should be segregated. One challenge in studying such multisensory integration is how to quantify the multisensory interactions, a challenge that is amplified by the host of methods that are now used to measure neural, behavioral, and perceptual responses. Many of the measures that have been developed to quantify multisensory integration (and which have been derived from single unit analyses), have been applied to these different measures without much consideration for the nature of the process being studied.
View Article and Find Full Text PDFThe naked mole-rat (Heterocephalus glaber) is a small fossorial rodent with specialized dentition that is reflected by the large cortical area dedicated to representation of the prominent incisors. Due to naked mole-rats' behavioral reliance on the incisors for digging and for manipulating objects, as well as their ability to move the lower incisors independently, we hypothesized that expanded somatosensory representations of the incisors would be present within the cerebellum in order to accommodate a greater degree of proprioceptive, cutaneous, and periodontal input. Multiunit electrophysiological recordings targeting the ansiform lobule were used to investigate tactile inputs from receptive fields on the entire body with a focus on the incisors.
View Article and Find Full Text PDFFront Syst Neurosci
November 2013
Classical analytical approaches for examining multisensory processing in individual neurons have relied heavily on changes in mean firing rate to assess the presence and magnitude of multisensory interaction. However, neurophysiological studies within individual sensory systems have illustrated that important sensory and perceptual information is encoded in forms that go beyond these traditional spike-based measures. Here we review analytical tools as they are used within individual sensory systems (auditory, somatosensory, and visual) to advance our understanding of how sensory cues are effectively integrated across modalities (e.
View Article and Find Full Text PDFNormal sensory experience is necessary for the development of multisensory processing, such that disruption through environmental manipulations eliminates or alters multisensory integration. In this Neuro Forum, we examine the recent paper by Xu et al. (J Neurosci 32: 2287-2298, 2012) which proposes that the statistics of cross-modal stimuli encountered early in life might be a driving factor for the development of normal multisensory integrative abilities in superior colliculus neurons.
View Article and Find Full Text PDFWe examined the chemoarchitecture of layer 4 isocortex and the number of myelinated nerve fibers of selected cranial nerves in the American water shrew (Sorex palustris). This study took advantage of the opportunity to examine juvenile brain tissue, which often reveals the most distinctive cortical modules related to different sensory representations. Flattened cortical sections were processed for the metabolic enzyme cytochrome oxidase, revealing a number of modules and septa.
View Article and Find Full Text PDFAquatic mammals use vibrissae to detect hydrodynamic stimuli over a range from 5 to 150 Hz, similar to the range detected by lateral line systems in fishes and amphibians. Manatees possess ∼5,300 vibrissae distributed over the body, innervated by ∼209,000 axons. This extensive innervation devoted to vibrissae follicles is reflected in enlarged, elaborate somatosensory regions of the gracile, cuneate, and Bischoff's brain-stem nuclei, ventrobasal thalamus, and presumptive somatosensory cortex.
View Article and Find Full Text PDFMammalian species use tactile hairs to address a variety of perceptual challenges in detecting and responding appropriately to environmental stimuli. With a wide range of functional roles that range from object detection, to fine texture discrimination, to hydrodynamic trail perception, tactile hairs have been adapted for a variety of environmental niches to enhance survival through optimizing detection of somatosensory cues. Because the high level of innervation associated with tactile hairs requires a commensurately high dedication of neural resources, their distribution is restricted to specific regions of the body that encounter stimuli of interest--commonly, the face.
View Article and Find Full Text PDFNorthern grasshopper mice (Onychomys leucogaster) are among the most highly carnivorous rodents in North America. Because predatory mammals may have specialization of senses used to detect prey, we investigated the organization of sensory areas within grasshopper mouse neocortex and quantified the number of myelinated axons in grasshopper mouse trigeminal, cochlear, and optic nerves. Multiunit electrophysiological recordings combined with analysis of flattened sections of neocortex processed for cytochrome oxidase were used to determine the topography of primary somatosensory cortex (S1) and the location and size of both the visual and auditory cortex in adult animals.
View Article and Find Full Text PDFInsectivores represent extremes in mammalian body size and brain size, retaining various "primitive" morphological characteristics, and some species of Insectivora are thought to share similarities with small-bodied ancestral eutherians. This raises the possibility that insectivore brains differ from other taxa, including rodents and primates, in cellular scaling properties. Here we examine the cellular scaling rules for insectivore brains and demonstrate that insectivore scaling rules overlap somewhat with those for rodents and primates such that the insectivore cortex shares scaling rules with rodents (increasing faster in size than in numbers of neurons), but the insectivore cerebellum shares scaling rules with primates (increasing isometrically).
View Article and Find Full Text PDFIn this study, we examined the topography of projections from facial afferents to the trigeminal brainstem nuclear complex (TBNC) in naked mole-rats using the neuronal tracer CTB-HRP. Tracer injections were made in a ventral to dorsal sequence that included the tooth pulp and dental ligament, ventral buccal pad, vibrissae, and the forehead. Labeled terminals were identified throughout the rostrocaudal extent of the TBNC, including the principal nucleus (Pr5), pars oralis (Sp5O), pars interpolaris (Sp5I), and pars caudalis (Sp5C) of the spinal trigeminal nucleus.
View Article and Find Full Text PDFFlorida manatees have an extensive, well-developed system of vibrissae distributed over their entire bodies and especially concentrated on the face. Although behavioral and anatomical assessments support the manatee's reliance on somatosensation, a systematic analysis of the manatee thalamus and brainstem areas dedicated to tactile input has never been completed. Using histochemical and histological techniques (including stains for myelin, Nissl, cytochrome oxidase, and acetylcholinesterase), we characterized the relative size, extent, and specializations of somatosensory regions of the brainstem and thalamus.
View Article and Find Full Text PDFFlorida manatees are large-bodied aquatic herbivores that use large tactile vibrissae for several purposes. Facial vibrissae are used to forage in a turbid water environment, and the largest perioral vibrissae can also grasp and manipulate objects. Other vibrissae distributed over the entire postfacial body appear to function as a lateral line system.
View Article and Find Full Text PDFFlorida manatees (Trichechus manatus latirostris) possess modified vibrissae that are used in conjunction with specialized perioral musculature to manipulate vegetation for ingestion, and aid in the tactile exploration of their environment. Therefore it is expected that manatees possess a large facial motor nucleus that exhibits a complex organization relative to other taxa. The topographical organization of the facial motor nucleus of five adult Florida manatees was analyzed using neuroanatomical methods.
View Article and Find Full Text PDFCetacean (dolphin, whale, and porpoise) brains are among the least-studied mammalian brains because of the formidability of collecting and histologically preparing such relatively rare and large specimens. Among cetaceans, there exist relatively few studies of the brain of the harbor porpoise (Phocoena phocoena). Magnetic resonance imaging (MRI) offers a means of observing the internal structure of the brain when traditional histological procedures are not practical.
View Article and Find Full Text PDF