Publications by authors named "Diana Samaroo"

Delivery strategies for porphyrinoid-based photosensitizers for use in therapeutic applications are based on a myriad of factors, which include porphyrinoid structure, solubility and cellular targets. These drug-delivery methods include encapsulation, hydrogels, protein carriers, nanoparticles and polymeric micelles among others. This article reviews the strategies for delivering porphyrinoids published to date and will focus on porphyrins, corroles, chlorins, bacteriochlorins, porphyrazines and phthalocyanines.

View Article and Find Full Text PDF

A facile modular approach to rapidly prepare pH-responsive hydrogels by crosslinking polysaccharides with polyamines is demonstrated. Hydrogels are prepared by first reacting the less reactive polysaccharides with the cross-linker epichlorohydrin and completed by the addition of polyamines. The crosslinking of polysaccharides with polyamines provides a facile method for incorporating functionality into polysaccharide based hydrogels.

View Article and Find Full Text PDF

A water soluble zinc(II) phthalocyanine symmetrically appended with eight thioglucose units was synthesized from commercially available hexadecafluorophthalocyaninatozinc(II) by controlled nucleophilic substitution of the peripheral fluoro groups. The photophysical properties and cancer cell uptake studies of this nonhydrolyzable thioglycosylated phthalocyanine are reported. The new compound has amphiphilic character, is chemically stable, and can potentially be used as a photosensitizer in photodynamic therapy.

View Article and Find Full Text PDF

The facile synthesis and photophysical properties of three nonhydrolyzable thioglycosylated porphyrinoids are reported. Starting from meso-perfluorophenylporphyrin, the nonhydrolyzable thioglycosylated porphyrin (PGlc₄), chlorin (CGlc₄), isobacteriochlorin (IGlc₄), and bacteriochlorin (BGlc₄) can be made in 2-3 steps. The ability to append a wide range of targeting agents onto the perfluorophenyl moieties, the chemical stability, and the ability to fine-tune the photophysical properties of the chromophores make this a suitable platform for development of biochemical tags, diagnostics, or as photodynamic therapeutic agents.

View Article and Find Full Text PDF

A link between celiac disease and schizophrenia has been postulated for several years, based primarily on reports of elevated levels of antibody to gliadin in patients. We sought to examine the proposed connection between schizophrenia and celiac disease by characterizing the molecular specificity and mechanism of the anti-gliadin immune response in a subset of individuals with schizophrenia. Blood samples from individuals with schizophrenia and elevated anti-gliadin antibody titer were examined for celiac disease-associated biomarkers, including antibodies to transglutaminase 2 (TG2) enzyme and deamidated gliadin peptides, as well as the HLA-DQ2 and -DQ8 MHC genes.

View Article and Find Full Text PDF

A phenanthridine derivative covalently linked to a ruthenium complex yields an imaging probe whose fluorescence intensity and lifetime change substantially in the presence of RNA.

View Article and Find Full Text PDF

Celiac disease, also known as gluten-sensitive enteropathy and nontropical sprue, is a prevalent autoimmune disorder that is triggered by the ingestion of wheat gluten and related proteins of rye and barley in genetically susceptible individuals. The immune response in celiac disease involves the adaptive, as well as the innate, and is characterized by the presence of anti-gluten and anti-transglutaminase 2 antibodies, lymphocytic infiltration in the epithelial membrane and the lamina propria, and expression of multiple cytokines and other signaling proteins. The disease leads to inflammation, villous atrophy, and crypt hyperplasia in the small intestine.

View Article and Find Full Text PDF

Here we report on a phenanthridine derivative which has a covalently linked fluorescein molecule in order to increase the light absorption and hence fluorescence signal intensity when bound to duplex RNA. Steady-state fluorescence shows that the energy transfer efficiency from the fluorescein to the phenanthridine fluorophore is approximately 77%, which results in the probe being over 5x brighter than other phenanthridine derivatives when bound to RNA. Due to the relatively long lifetime (approximately 20 ns) of the probe, time-resolved fluorescence is used to increase the signal to background ratio in cell growth medium from 7 (steady-state value) to over 40.

View Article and Find Full Text PDF

The four para fluoro groups on 5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (TPPF20) are known to react with a variety of nucleophiles, but the reaction conditions for this substitution reaction depend on the nature of the nucleophiles, e.g. primary amines versus thiols.

View Article and Find Full Text PDF

We report an efficient and rapid means for the synthesis of tetrakis(pentafluorophenyl)porphyrin (TPPF(20)) derivatives by microwave irradiation in an environmentally acceptable solvent. The selective displacement of the para-fluorine groups in TPPF(20) by primary amines occurs in yields between 70 and 95%. This method demonstrates that TPPF(20) is an ideal platform for the rapid formation of porphyrin conjugates for therapeutic, catalytic, and other applications.

View Article and Find Full Text PDF