Publications by authors named "Diana S Himmelstein"

Sonic hedgehog (SHH) is a master developmental regulator. In 1995, the SHH crystal structure predicted that SHH-E176 (human)/E177 (mouse) regulates signaling through a Zn-dependent mechanism. While Zn is known to be required for SHH protein stability, a regulatory role for SHH-E176 or Zn has not been described.

View Article and Find Full Text PDF

All tauopathies result in various forms of cognitive decline and neuronal loss. Although in some diseases, tau mutations appear to cause neurodegeneration, the toxic "form" of tau remains elusive. Tau is the major protein found within neurofibrillary tangles (NFTs) and therefore it seemed rational to assume that aggregation of tau monomers into NFTs was causal to the disease process.

View Article and Find Full Text PDF

The work presented herein addresses a specific portion of the tau pathology, pre-fibrillar oligomers, now thought to be important pathological components in Alzheimer's disease and other neurodegenerative tauopathies. In previous work, we generated an antibody against purified recombinant cross-linked tau dimers, called Tau Oligomeric Complex 1 (TOC1). TOC1 recognizes tau oligomers and its immunoreactivity is elevated in Alzheimer's disease brains.

View Article and Find Full Text PDF

AD (Alzheimer's disease) is a progressive neurodegenerative disorder characterized by the extracellular accumulation of amyloid β-peptide and the intracellular accumulation of tau. Although there is much evidence linking tau to neurodegeneration, the precise mechanism of tau-mediated neurotoxicity remains elusive. The presence of tau-positive pre-tangle neurons lacking neurofibrillary tangles has been reported in AD brain tissue.

View Article and Find Full Text PDF

Tau is a microtubule-associated protein thought to help modulate the stability of neuronal microtubules. In tauopathies, including Alzheimer's disease and several frontotemporal dementias, tau is abnormally modified and misfolded resulting in its disassociation from microtubules and the generation of pathological lesions characteristic for each disease. A recent surge in the population of people with neurodegenerative tauopathies has highlighted the immense need for disease-modifying therapies for these conditions, and new attention has focused on tau as a potential target for intervention.

View Article and Find Full Text PDF

Background: The rostral telencephalic dorsal midline is an organizing center critical for the formation of the future cortex and hippocampus. While the intersection of WNTs, BMPs, and FGFs establishes boundaries within this critical center, a direct role of Shh signaling in this region remains controversial. In this paper we show that both increased and decreased Shh signaling directly affects boundary formation within the telencephalic dorsal midline.

View Article and Find Full Text PDF