Publications by authors named "Diana Rafieezadeh"

Extracellular vesicles (EVs) have emerged as a fascinating area of research in molecular biology, with diverse therapeutic applications. These small membrane-bound structures, released by cells into the extracellular space, play a crucial role in intercellular communication and hold great potential for advancing medical treatments. The aim of this study is to have a narrative review on the use and therapeutic applications of EVs.

View Article and Find Full Text PDF

Marine environments harbor a wealth of bioactive peptides with potential anticancer properties, sourced from diverse organisms like tunicates, sea sponges, and mollusks. Through isolation, identification, and modification, peptides such as Stylisin and Papuamides have shown enhanced activity and progressed to clinical trials, underscoring their therapeutic promise. Enzymatic hydrolysis emerges as a favored method for peptide extraction from marine proteins, with sponges identified as particularly rich sources.

View Article and Find Full Text PDF

In this paper, we explore marine bioactive peptides with anticancer potential sourced from various marine organisms, including tunicates, sea sponges, and mollusks. Peptides like Stylisin and Papuamides have been isolated, identified, and modified to enhance their activity, with many advancing to clinical trials due to their diverse biological activities, promising prospects in medicine. Enzymatic hydrolysis is a favored method for extracting peptides from marine proteins, particularly from sponges known for their rich bioactive compounds.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have emerged as a captivating field of study in molecular biology with diverse applications in therapeutics. These small membrane-bound structures, released by cells into the extracellular space, play a vital role in intercellular communication and hold immense potential for advancing medical treatments. EVs, including exosomes, microvesicles, and apoptotic bodies, are classified based on size and biogenesis pathways, with exosomes being the most extensively studied.

View Article and Find Full Text PDF