Publications by authors named "Diana Price"

Direct targeting of alpha-synuclein (ASYN) has emerged as a disease-modifying strategy for Parkinson's disease and other synucleinopathies which is being approached using both small molecule compounds and ASYN-targeted biologics. Minzasolmin (UCB0599) is an orally bioavailable and brain-penetrant small molecule ASYN misfolding inhibitor in clinical development as a disease-modifying therapeutic for Parkinson's disease. Herein the results of preclinical evaluations of minzasolmin that formed the basis for subsequent clinical development are described.

View Article and Find Full Text PDF
Article Synopsis
  • TLRs are essential for the immune response to pathogens and damage signals but overactivation can cause neuronal damage and worsen neurodegenerative diseases.
  • TLR2 and TLR9 have been linked to neurodegeneration, with increased levels leading to inflammation and protein aggregation in the brain.
  • The study explored a TLR2/TLR9 antagonist, NPT1220-312, which effectively reduced inflammatory cytokine release in immune cells, suggesting it may offer therapeutic benefits for neuroinflammatory conditions.
View Article and Find Full Text PDF
Article Synopsis
  • NPT520-34 is a small molecule in clinical development aimed at treating Parkinson's disease by promoting alpha-synuclein clearance and reducing inflammation.
  • In animal studies, NPT520-34 showed significant benefits, including decreased alpha-synuclein pathology and improved motor function after daily administration.
  • The compound appears to tackle two major issues in neurodegenerative diseases: enhancing the removal of harmful protein aggregates and lowering inflammation levels.
View Article and Find Full Text PDF

Toll-like receptors (TLRs) play key role in innate immune response to Damage Associated Molecular Patterns (DAMPs) and Pathogen Associated Molecular Patterns (PAMPs). DAMP/PAMP-mediated activation of TLRs triggers NFκB signaling resulting in pro-inflammatory cytokine release. Using TLR2-Pam2CSK4 agonist co-crystal structure information, we designed and synthesized a novel series of Toll-like Receptor 2 (TLR2) lipid antagonists and identified compounds 14, 15 and 17 with sub-micromolar potency.

View Article and Find Full Text PDF

Accumulation of alpha-synuclein (ASYN) in neurons and other CNS cell types may contribute to the underlying pathology of synucleinopathies including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and Multiple Systems Atrophy (MSA). In support of this hypothesis for PD, ASYN immunopositive aggregates are a prominent pathological feature of PD, and mutations and gene multiplications of human wild type (WT) ASYN cause rare familial autosomal-dominant forms of PD. Targeted therapeutics that reduce the accumulation of ASYN could prevent or slow the neurodegenerative processes in PD and other synucleinopathies.

View Article and Find Full Text PDF

Abnormal accumulation and propagation of the neuronal protein α-synuclein has been hypothesized to underlie the pathogenesis of Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. Here we report a de novo-developed compound (NPT100-18A) that reduces α-synuclein toxicity through a novel mechanism that involves displacing α-synuclein from the membrane. This compound interacts with a domain in the C-terminus of α-synuclein.

View Article and Find Full Text PDF

Abnormal α-synuclein (α-syn) accumulation in the CNS may underlie neuronal cell and synaptic dysfunction leading to motor and cognitive deficits in synucleinopathies including Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB). Multiple groups demonstrated α-syn accumulation in CNS accessory structures, including the eyes and olfactory terminals, as well as in peripheral organs of Parkinsonian patients. Retinal imaging studies of mice overexpressing fused α-syn::GFP were conducted to evaluate the presence and progression of retinal pathology in a PD/DLB transgenic mouse model.

View Article and Find Full Text PDF

Background And Purpose: Anti-retrovirals have improved and extended the life expectancy of patients with HIV. However, as this population ages, the prevalence of cognitive changes is increasing. Aberrant activation of kinases, such as receptor tyrosine kinases (RTKs) and cyclin-dependent kinase 5 (CDK5), play a role in the mechanisms of HIV neurotoxicity.

View Article and Find Full Text PDF

Background: In dementia with Lewy bodies (DLB) abnormal interactions between α-synuclein (α-syn) and beta amyloid (Aβ) result in selective degeneration of neurons in the neocortex, limbic system and striatum. However, factors rendering these neurons selectively vulnerable have not been fully investigated. The metabotropic glutamate receptor 5 (mGluR5) has been shown to be up regulated in DLB and might play a role as a mediator of the neurotoxic effects of Aβ and α-syn in vulnerable neuronal populations.

View Article and Find Full Text PDF
Article Synopsis
  • Selective estrogen receptor β (ERβ) agonists like AC-186 may be safer alternatives to nonselective estrogens used in hormone replacement therapy, as they primarily activate ERβ.
  • In a rat model of Parkinson's disease, AC-186 demonstrated neuroprotective effects by preventing motor and cognitive deficits and protecting dopamine neurons, but these benefits were only observed in males.
  • Unlike 17β-estradiol, which activates both ERβ and ERα, AC-186 provided stronger neuroprotection in male rats, indicating a unique advantage for selective ERβ activation.
View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) leads to cognitive decline and can cause psychotic symptoms like hallucinations and delusions in 25-50% of patients, with no effective treatments available due to safety concerns with antipsychotics.
  • A study using mice with AD-like conditions showed that these mice exhibited behaviors associated with psychosis, and treatment with pimavanserin, a 5-HT(2A) receptor inverse agonist, alleviated these psychotic symptoms.
  • The findings indicate that targeting the 5-HT(2A) receptor might offer a new therapeutic approach for managing psychosis in AD, suggesting potential benefits of using pimavanserin in clinical settings.
View Article and Find Full Text PDF

The indirect serotonin (5-HT) agonist 3,4-methylenedioxymethamphetamine (MDMA) produces a distinct behavioral profile in rats consisting of locomotor hyperactivity, thigmotaxis, and decreased exploration. The indirect 5-HT agonist α-ethyltryptamine (AET) produces a similar behavioral profile. Using the Behavioral Pattern Monitor (BPM), the present investigation examined whether the effects of MDMA and AET are dependent on the novelty of the testing environment.

View Article and Find Full Text PDF

Parkinson's disease psychosis (PDP) is a condition for which a safe, tolerated, and effective therapy is lacking. Treatment with typical or atypical antipsychotics may be contraindicated in patients with PDP because of the potential for aggravating motor symptoms. This study used a novel animal model with features of both Parkinson's disease (PD) and psychosis to examine a potential mechanism for reversing PDP.

View Article and Find Full Text PDF

Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are neurodegenerative disorders of the aging population characterized by the abnormal accumulation of alpha-synuclein (alpha-syn). Previous studies have suggested that excitotoxicity may contribute to neurodegeneration in these disorders, however the underlying mechanisms and their relationship to alpha-syn remain unclear. For this study we proposed that accumulation of alpha-syn might result in alterations in metabotropic glutamate receptors (mGluR), particularly mGluR5 which has been linked to deficits in murine models of PD.

View Article and Find Full Text PDF

Reactive astrocytes in neurotrauma, stroke, or neurodegeneration are thought to undergo cellular hypertrophy, based on their morphological appearance revealed by immunohistochemical detection of glial fibrillary acidic protein, vimentin, or nestin, all of them forming intermediate filaments, a part of the cytoskeleton. Here, we used a recently established dye-filling method to reveal the full three-dimensional shape of astrocytes assessing the morphology of reactive astrocytes in two neurotrauma models. Both in the denervated hippocampal region and the lesioned cerebral cortex, reactive astrocytes increased the thickness of their main cellular processes but did not extend to occupy a greater volume of tissue than nonreactive astrocytes.

View Article and Find Full Text PDF

Arrowsmith is a unique computer-assisted strategy designed to assist investigators in detecting biologically-relevant connections between two disparate sets of articles in Medline. This paper describes how an inter-institutional consortium of neuroscientists used the UIC Arrowsmith web interface http://arrowsmith.psych.

View Article and Find Full Text PDF

The thorough characterization of transgenic mouse models of human central nervous system diseases is a necessary step in realizing the full benefit of using animal models to investigate disease processes and potential therapeutics. Because of the labor- and resource-intensive nature of high-resolution imaging, detailed investigation of possible structural or biochemical alterations in brain sections has typically focused on specific regions of interest as determined by the researcher a priori. For example, Parkinson's disease researchers often focus imaging on regions of the brain expected to exhibit pathology such as the substantia nigra and striatum.

View Article and Find Full Text PDF

The creation of structured shared data repositories for molecular data in the form of web-accessible databases like GenBank has been a driving force behind the genomic revolution. These resources serve not only to organize and manage molecular data being created by researchers around the globe, but also provide the starting point for data mining operations to uncover interesting information present in the large amount of sequence and structural data. To realize the full impact of the genomic and proteomic efforts of the last decade, similar resources are needed for structural and biochemical complexity in biological systems beyond the molecular level, where proteins and macromolecular complexes are situated within their cellular and tissue environments.

View Article and Find Full Text PDF

Evidence that Ca(2+)-activated K(+) (K(Ca)) channels play a role in cell volume changes and K(+) homeostasis led to a prediction that astrocytes would have K(Ca) channels near blood vessels in order to maintain K(+) homeostasis. Consistent with this thinking the present study demonstrates that rSlo K(Ca) channels are in glial cells of the adult rat central nervous system (CNS) and highly localized to specializations of astrocytes associated with the brain vasculature. Using confocal and thin-section electron microscopic immunolabeling methods the distribution of rSlo was examined in adult rat brain.

View Article and Find Full Text PDF