This manuscript presents an experimental investigation of the friction and wear properties of poly (methyl methacrylate) (PMMA) nanocomposites reinforced with functionalized multi-walled carbon nanotubes (MWCNTs). The aim of this study is to evaluate the potential of MWCNTs as a reinforcement material for enhancing the tribological performance of PMMA. Three types of multi-walled carbon nanotubes, i.
View Article and Find Full Text PDFThis study was carried out to investigate the effect of the diamond-shaped Interlocking Chain Plastic Bead (ICPB) on fiber-reinforced fly ash-based geopolymer concrete. In this study, geopolymer concrete was produced using fly ash, NaOH, silicate, aggregate, and nylon66 fibers. Characterization of fly ash-based geopolymers (FGP) and fly ash-based geopolymer concrete (FRGPC) included chemical composition via XRF, functional group analysis via FTIR, compressive strength determination, flexural strength, density, slump test, and water absorption.
View Article and Find Full Text PDFThe applications of carbon fiber reinforced polymer composites (CFRPCs) in aerospace, automotive, electronics and lab-on-chip devices require precise machining processes. Over the past decade, there have been numerous attempts to machine CFRPCs using both traditional and unconventional machining techniques. However, because of their limitations, these methods have not gained widespread acceptance.
View Article and Find Full Text PDFThis research investigates the two different hybrid nanofluid flows between two parallel plates placed at two different heights, y0 and yh, respectively. Water-based hybrid nanofluids are obtained by using Al2O3, TiO2 and Cu as nanoparticles, respectively. The upper-level plate is fixed, while the lower-level plate is stretchable.
View Article and Find Full Text PDFThis study is aimed to explore the magneto-hydrodynamic Carreau fluid flow over a stretching/shrinking surface with a convectively heated boundary. Temperature-dependent variable thermophysical properties are utilized to formulate the problem. The flow governing equations are obtained with boundary layer approximation and constitutive relation of the Carreau fluid.
View Article and Find Full Text PDFThe presence of laryngeal disease affects vocal fold(s) dynamics and thus causes changes in pitch, loudness, and other characteristics of the human voice. Many frameworks based on the acoustic analysis of speech signals have been created in recent years; however, they are evaluated on just one or two corpora and are not independent to voice illnesses and human bias. In this article, a unified wavelet-based paradigm for evaluating voice diseases is presented.
View Article and Find Full Text PDFJoining immiscible materials such as copper and stainless steel together is a significant concern due to distinct mechanical and metallurgical properties across the joint line, such as melting points, the coefficient of linear thermal expansion, and thermal conductivity. The joint properties of copper to stainless steel welds are in great demand for various mechanical components of the international thermonuclear experimental reactor, ultra-high vacuum system, plan wave linear-accelerator or linac structure, and heat exchanger. These dissimilar-metals joints offer excellent flexibility in design and production, leading to a robust structure for many cutting-edge applications.
View Article and Find Full Text PDFThe purpose of this research is to emphasize the importance of mental health and contribute to the overall well-being of humankind by detecting stress. Stress is a state of strain, whether it be mental or physical. It can result from anything that frustrates, incenses, or unnerves you in an event or thinking.
View Article and Find Full Text PDFCoal ash-based geopolymers with mine tailings addition activated with phosphate acid were synthesized for the first time at room temperature. In addition, three types of aluminosilicate sources were used as single raw materials or in a 1/1 wt. ratio to obtain five types of geopolymers activated with HPO.
View Article and Find Full Text PDFThe carbon steel is used in many areas due to its good mechanical properties; however, its low corrosion resistance presents a very important problem, for example, when carbon steel carabiners are used in the petroleum industry or navy, the possibility of an accident is higher due to carabiner failure. This phenomenon could occur as a consequence of the corrosion process which negatively affects mechanical properties. This paper study the possibility to improve its corrosion resistance by depositing on its surface a phosphate layer and a paint layer, and also aims to analyze the immersion behavior in saltwater of carbon steel, phosphate carbon steel, and phosphate and painted carbon steel.
View Article and Find Full Text PDFThis study approaches the issues which appear during carabiner use and analyses the possibility to eliminate them. Therefore, to improve the corrosion resistance of carbon steel, used in carabiners manufacturing, three different insoluble phosphate layers were deposited on the samples' surface. The layers were obtained by immersion in zinc-based phosphate solution, zinc/iron-based phosphate solution and manganese-based phosphate solution, Afterwards, to protect against mechanical shocks, a layer of elastomer-based paint was deposited.
View Article and Find Full Text PDF