Publications by authors named "Diana Peterson"

This study examined whether student learning outcome measures are influenced by the addition of three-dimensional and digital teaching tools to a traditional dissection and lecture learning format curricula. The study was performed in a semester long graduate level course that incorporated both gross anatomy and neuroanatomy curricula. Methods compared student examination performance on material taught using lecture and cadaveric dissection teaching tools alone or lecture and cadaveric dissection augmented with computerized three-dimensional teaching tools.

View Article and Find Full Text PDF

Objective: Functioning is an important outcome in hand osteoarthritis (OA). The heterogeneity of patient-reported outcome measures (PROMs) available challenges the direct comparability of information collected by these instruments. This study aimed to examine whether it is possible to achieve metric equivalence of PROMs commonly used to measure functioning in people with hand OA.

View Article and Find Full Text PDF

For analyses of complex sounds, many neurons integrate information across different spectral elements via suppressive effects that are distant from the neurons' excitatory tuning. In the mustached bat, suppression evoked by sounds within the first sonar harmonic (23-30 kHz) or in the subsonar band (<23 kHz) alters responsiveness to the higher best frequencies of many neurons. This study examined features and mechanisms associated with low-frequency (LF) suppression among neurons of the lateral lemniscal nuclei (NLL).

View Article and Find Full Text PDF

This report examines temporal features of facilitation and suppression that underlie spectrally integrative responses to complex vocal signals. Auditory responses were recorded from 160 neurons in the inferior colliculus (IC) of awake mustached bats. Sixty-two neurons showed combination-sensitive facilitation: responses to best frequency (BF) signals were facilitated by well-timed signals at least an octave lower in frequency, in the range 16-31 kHz.

View Article and Find Full Text PDF

In vertebrate auditory systems, specialized combination-sensitive neurons analyze complex vocal signals by integrating information across multiple frequency bands. We studied combination-sensitive interactions in neurons of the inferior colliculus (IC) of awake mustached bats, using intracellular somatic recording with sharp electrodes. Facilitated combinatorial neurons are coincidence detectors, showing maximum facilitation when excitation from low- and high-frequency stimuli coincide.

View Article and Find Full Text PDF