Optical precision spectroscopy of isotope shifts can be used to test for new forces beyond the standard model, and to determine basic properties of atomic nuclei. We measure isotope shifts on the highly forbidden ^{2}S_{1/2}→^{2}F_{7/2} octupole transition of trapped ^{168,170,172,174,176}Yb ions. When combined with previous measurements in Yb^{+} and very recent measurements in Yb, the data reveal a King plot nonlinearity of up to 240σ.
View Article and Find Full Text PDFWe measure isotope shifts for five Yb^{+} isotopes with zero nuclear spin on two narrow optical quadrupole transitions ^{2}S_{1/2}→^{2}D_{3/2}, ^{2}S_{1/2}→^{2}D_{5/2} with an accuracy of ∼300 Hz. The corresponding King plot shows a 3×10^{-7} deviation from linearity at the 3σ uncertainty level. Such a nonlinearity can indicate physics beyond the Standard Model (SM) in the form of a new bosonic force carrier, or arise from higher-order nuclear effects within the SM.
View Article and Find Full Text PDFNitrogen-vacancy (NV) quantum defects in diamond are sensitive detectors of magnetic fields. Owing to their atomic size and optical readout capability, they have been used for magnetic resonance spectroscopy of nanoscale samples on diamond surfaces. Here, we present a protocol for fabricating NV diamond chips and for constructing and operating a simple, low-cost 'quantum diamond spectrometer' for performing NMR and electron spin resonance (ESR) spectroscopy in nanoscale volumes.
View Article and Find Full Text PDF