Developing new pesticides poses a significant challenge in designing next-generation natural insecticides that selectively target specific pharmacological sites while ensuring environmental friendliness. In this study, we aimed to address this challenge by formulating novel natural pesticides derived from secondary plant metabolites, which exhibited potent insecticide activity. Additionally, we tested their effect on mitochondrial enzyme activity and the proteomic profile of Ae.
View Article and Find Full Text PDFCacao pod husks (CHs), the most abundant by-product of cacao beans production, can potentially become a source of functional ingredients for the food, cosmetic, and pharmaceutical industries. Three pigment samples (yellow, red, and purple) from lyophilized and ground cacao pod husk epicarp (CHE), were isolated by ultrasound-assisted solvent extraction, with yields between 11 and 14 wt%. The pigments exhibited UV-Vis flavonoid-related absorption bands at 283 nm and 323 nm and, only for the purple extract, reflectance bands in the 400-700 nm range.
View Article and Find Full Text PDFSearching for new bioactive molecules to design insecticides is a complex process since pesticides should be highly selective, active against the vector, and bio-safe for humans. Aiming to find natural compounds for mosquito control, we evaluated the insecticidal activity of essential oils (EOs) from 20 American native plants against Aedes aegypti larvae using bioassay, biochemical, and in silico analyses. The highest larvicide activity was exhibited by EOs from Steiractinia aspera (LC = 42.
View Article and Find Full Text PDF