Drought predisposes forest trees to bark beetle-induced mortality, but the physiological mechanisms remain unclear. While drought-induced water and carbon limitations have been implicated in defensive failure and tree susceptibility, evidence demonstrating how these factors interact is scarce. We withheld water from mature, potted Pinus edulis and subsequently applied a double-stem girdle to inhibit carbohydrate transport from the crown and roots.
View Article and Find Full Text PDFGlobal declines in tree populations have led to dramatic shifts in forest ecosystem composition, biodiversity, and functioning. These changes have consequences for both forest plant and wildlife communities, particularly when declining species are involved in coevolved mutualisms. Whitebark pine () is a declining keystone species in western North American high-elevation ecosystems and an obligate mutualist of Clark's nutcracker (), an avian seed predator and disperser.
View Article and Find Full Text PDFBy-product mutualisms are ubiquitous yet seldom considered in models of mutualism. Most models represent conditional mutualisms that shift between mutualism and antagonism in response to shifts in costs and benefits resulting from changes in environmental quality. However, in by-product mutualisms, benefits arise as a part of normal life processes that may be costly to produce but incur little-to-no additional costs in response to the interaction.
View Article and Find Full Text PDFContext dependency occurs when biological interactions shift in sign or magnitude depending upon genetic, abiotic, and biotic context. Most models of mutualism address systems where interaction outcomes slide along a mutualism-antagonism continuum as environmental conditions vary altering cost-benefit relationships. However, these models do not apply to the many mutualisms that involve by-product benefits and others that do not have antagonistic alternate states.
View Article and Find Full Text PDFBark beetles form a variety of symbioses with fungi. Recent studies reveal how the fungi influence beetle nutrition and detoxify tree defenses and provide insight into why these symbioses vary so greatly in their outcomes, not only for host and symbiont, but also for the forest ecosystems within which they exist. Here, I review recent advances in our knowledge of these systems.
View Article and Find Full Text PDFTree-killing bark beetles are the most economically important insects in conifer forests worldwide. However, despite >200 years of research, the drivers of population eruptions and crashes are still not fully understood and the existing knowledge is thus insufficient to face the challenges posed by the Anthropocene. We critically analyze potential biotic and abiotic drivers of population dynamics of an exemplary species, the European spruce bark beetle (ESBB) (Ips typographus) and present a multivariate approach that integrates the many drivers governing this bark beetle system.
View Article and Find Full Text PDFIncreased mortality of forest trees, driven directly or indirectly by climate change, is occurring around the world. In western North America, whitebark pine, a high elevation keystone species, and lodgepole pine, a widespread ecologically and economically important tree, have experienced extensive mortality in recent climate-driven outbreaks of the mountain pine beetle. However, even in stands experiencing high levels of mortality, some mature trees have survived.
View Article and Find Full Text PDFEuphorbia ingens trees have been dying in large numbers in the Limpopo Province of South Africa for approximately 15 years. The ambrosia beetle Cyrtogenius africus is often found infesting diseased and dying trees. The aim of this study was to identify the ophiostomatoid fungi occurring in the galleries of C.
View Article and Find Full Text PDFExotic tree pathogens can cause devastating ecological effects on forests that can be exacerbated when infections increase the likelihood of attack by insects. Current high rates of mortality of whitebark pine (Pinus albicaulis Engelm.) are due to white pine blister rust caused by the exotic fungus, Cronartium ribicola J.
View Article and Find Full Text PDFThe mountain pine beetle, Dendroctonus ponderosae, depends on two fungi, Grosmannia clavigera and Ophiostoma montium, to augment a nutrient-poor woody food resource. Because the two fungi exert differential effects on the host beetle, temperature-driven differences in fungal growth and competition outcomes have a strong potential to influence host population dynamics. Weisolated fungi from beetles and wood from three locations in Montana and Utah, USA, and measured their growth rates and sporulation between 5 and 35 °C on artificial media.
View Article and Find Full Text PDFThe fates of individual species are often tied to synchronization of phenology, however, few methods have been developed for integrating phenological models involving linked species. In this paper, we focus on mountain pine beetle (MPB, Dendroctonus ponderosae) and its two obligate mutualistic fungi, Grosmannia clavigera and Ophiostoma montium. Growth rates of all three partners are driven by temperature, and their idiosyncratic responses affect interactions at important life stage junctures.
View Article and Find Full Text PDFWhether and how mutualisms are maintained through ecological and evolutionary time is a seldom studied aspect of bark beetle-fungal symbioses. All bark beetles are associated with fungi and some species have evolved structures for transporting their symbiotic partners. However, the fungal assemblages and specificity in these symbioses are not well known.
View Article and Find Full Text PDFAll higher organisms are involved in symbioses with microbes. The importance of these partnerships has led to the concept of the holobiont, defined as the animal or plant with all its associated microbes. Indeed, the interactions between insects and symbionts form much of the basis for the success and diversity of this group of arthropods.
View Article and Find Full Text PDFInsect fungus gardens consist of a community of interacting microorganisms that can have either beneficial or detrimental effects to the farmers. In contrast to fungus-farming ants and termites, the fungal communities of ambrosia beetles and the effects of particular fungal species on the farmers are largely unknown. Here, we used a laboratory rearing technique for studying the filamentous fungal garden community of the ambrosia beetle, Xyleborinus saxesenii, which cultivates fungi in tunnels excavated within dead trees.
View Article and Find Full Text PDFEctosymbioses among bark beetles (Curculionidae, Scolytinae) and fungi (primarily ophiostomatoid Ascomycetes) are widespread and diverse. Associations range from mutualistic to commensal, and from facultative to obligate. Some fungi are highly specific and associated only with a single beetle species, while others can be associated with many.
View Article and Find Full Text PDFGondwanamyces and its Custingophora anamorphs were first described from Protea infructescences in South Africa. Subsequently these unusual fungi were also found on Cecropia in Central America. During an investigation into the decline and death of native Euphorbia trees in South Africa, several fungal isolates resembling the anamorph state of Gondwanamyces were obtained from diseased tissues.
View Article and Find Full Text PDFGrosmannia clavigera is a fungal pathogen of pine forests in western North America and a symbiotic associate of two sister bark beetles: Dendroctonus ponderosae and D. jeffreyi. This fungus and its beetle associate D.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
August 2011
Bark beetles are well known vectors of ophiostomatoid fungi including species of Ophiostoma, Grosmannia and Ceratocystis. In this study, the most common ophiostomatoid fungi associated with the lodgepole pine beetle, Dendroctonus murrayanae, were characterized. Pre-emergent and post-attack adult beetles were collected from lodgepole pines at four sites in British Columbia, Canada.
View Article and Find Full Text PDFThe idea that phytopathogenic fungi associated with tree-killing bark beetles are critical for overwhelming tree defenses and incurring host tree mortality, herein called the classic paradigm (CP), has driven research on bark beetle-fungus symbiosis for decades. It has also strongly influenced our views of bark beetle ecology. We discuss fundamental flaws in the CP, including the lack of consistency of virulent fungal associates with tree-killing bark beetles, the lack of correspondence between fungal growth in the host tree and the development of symptoms associated with a successful attack, and the ubiquity of similar associations of fungi with bark beetles that do not kill trees.
View Article and Find Full Text PDFXylosandrus mutilatus is an Asian ambrosia beetle that has recently established in Mississippi, Texas, Alabama, and possibly Florida, USA. We investigated the fungi associated with the mycangia (specialized fungus-transporting structures) of X. mutilatus in Mississippi.
View Article and Find Full Text PDFHost location by parasitoids and dipteran predators of bark beetles is poorly understood. Unlike coleopteran predators that locate prey by orienting to prey pheromones, wasps and flies often attack life stages not present until after pheromone production ceases. Bark beetles have important microbial symbionts, which could provide sources of cues.
View Article and Find Full Text PDFMulti-trophic interactions between prokaryotes, unicellular eukaryotes, and ecologically intertwined metazoans are presumably common in nature, yet rarely described. The mountain pine beetle, Dendroctonus ponderosae, is associated with two filamentous fungi, Grosmannia clavigera and Ophiostoma montium. Other microbes, including yeasts and bacteria, are also present in the phloem, but it is not known whether they interact with the symbiotic fungi or the host beetle.
View Article and Find Full Text PDFMycophagy by bark beetles is widespread. However, little is known regarding which developmental stages of bark beetles actually feed on fungi. To study this question, we sampled fungi associated with Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae) throughout development in naturally attacked trees.
View Article and Find Full Text PDF