Background: Pneumoconiosis among coal miners in the USA has been resurgent over the past two decades, despite modern dust controls and regulatory standards. Previously published studies have suggested that respirable crystalline silica (RCS) is a contributor to this disease resurgence. However, evidence has been primarily indirect, in the form of radiographic features.
View Article and Find Full Text PDFThe reasons for resurgent coal workers' pneumoconiosis and its most severe forms, rapidly progressive pneumoconiosis and progressive massive fibrosis (PMF), in the United States are not yet fully understood. To compare the pathologic and mineralogic features of contemporary coal miners with severe pneumoconiosis with those of their historical counterparts. Lung pathology specimens from 85 coal miners with PMF were included for evaluation and analysis.
View Article and Find Full Text PDFMulti-walled carbon nanotubes (MWCNT) are new materials with a wide range of industrial and commercial applications. However, their nano-scaled size and fiber-like shape render them respirable and potentially fibrogenic if inhaled into the lungs. To understand MWCNT fibrogenesis, we analyzed the pathologic and molecular aspects of the early phase response to MWCNT in mouse lungs.
View Article and Find Full Text PDFBenzo[a]pyrene (BP) is a potent pro-carcinogen and ubiquitous environmental pollutant. Here, we examined the induction and modulation of CYP1A1 and CYP1B1 and 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG) adduct formation in DNA from 20 primary normal human mammary epithelial cell (NHMEC) strains exposed to BP (4muM) in the absence or presence of chlorophyllin (5muM). Real-time polymerase chain reaction (RT-PCR) analysis revealed strong induction of both CYP1A1 and CYP1B1 by BP, with high levels of inter-individual variability.
View Article and Find Full Text PDFCarcinogenic polycylic aromatic hydrocarbons can alter immune responses. Changes in immune response gene expression profiles in multiple human mammary cell strains exposed to benzo(alpha)pyrene (BP) (4 microM) in vitro, in the presence or absence of chlorophyllin (5 microM), were observed using Affymetrix gene arrays. Expressions of five immune response genes were altered ~3.
View Article and Find Full Text PDFWe hypothesized that chlorophyllin (CHLN) would reduce benzo[a]pyrene-DNA (BP-DNA) adduct levels. Using normal human mammary epithelial cells (NHMECs) exposed to 4 microM BP for 24 hr in the presence or absence of 5 microM CHLN, we measured BP-DNA adducts by chemiluminescence immunoassay (CIA). The protocol included the following experimental groups: BP alone, BP given simultaneously with CHLN (BP+CHLN) for 24 hr, CHLN given for 24 hr followed by BP for 24 hr (preCHLN, postBP), and CHLN given for 48 hr with BP added for the last 24 hr (preCHLN, postBP+CHLN).
View Article and Find Full Text PDFBenzo(a)pyrene (BP) exposure causes alterations in gene expression in normal human mammary epithelial cells (NHMECs). This study used Affymetrix Hu-Gene133A arrays, with 14,500 genes represented, to evaluate modulation of BP-induced gene expression by chlorophyllin in six NHMEC strains derived from different donors. A major goal was to seek potential biomarkers of carcinogen exposure and how they behave in the presence of a chemopreventive agent.
View Article and Find Full Text PDFA mainstay of the antiretroviral drugs used for therapy of HIV-1, zidovudine (AZT) is genotoxic and becomes incorporated into DNA. Here we explored host inter-individual variability in AZT-DNA incorporation, by AZT radioimmunoassay (RIA), using 19 different strains of normal human mammary epithelial cells (NHMECs) exposed for 24 h to 200 microM AZT. Twelve of the 19 NHMEC strains showed detectable AZT-DNA incorporation levels (16 to 259 molecules of AZT/10(6) nucleotides), while 7 NHMEC strains did not show detectable AZT-DNA incorporation.
View Article and Find Full Text PDF