Publications by authors named "Diana Jurk"

Cellular senescence is recognised as a contributor to the ageing process and the development of multiple age-related conditions. Researchers have launched efforts to identify compounds capable to selectively kill senescent cells, known as senolytics, without affecting non senescent cells. As of now, over 40 compounds have demonstrated senolytic properties, offering promising prospects for reversing or ameliorating age-related conditions in preclinical studies.

View Article and Find Full Text PDF

Senescent cells drive tissue dysfunction through the senescence-associated secretory phenotype (SASP). We uncovered a central role for mitochondria in the epigenetic regulation of the SASP, where mitochondrial-derived metabolites, specifically citrate and acetyl-CoA, fuel histone acetylation at SASP gene loci, promoting their expression. We identified the mitochondrial citrate carrier (SLC25A1) and ATP-citrate lyase (ACLY) as critical for this process.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how old skin cells, called senescent cells, can make other parts of the body age faster too!
  • They found that adding these old skin cells to young mice made them weaker and affected how well they could move around, as well as their thinking skills.
  • This suggests that old skin cells might be spreading aging effects to other organs, like the brain, which could explain why aging can be linked to problems in both the skin and brain.
View Article and Find Full Text PDF
Article Synopsis
  • - Senescent cells release inflammatory signals known as the senescence-associated secretory phenotype (SASP), which are linked to aging and tissue dysfunction.
  • - Mitochondrial RNA (mtRNA) accumulates in these cells and activates RNA sensors, triggering the aggregation of MAVS and enhancing SASP production.
  • - Targeting the RNA sensors and understanding the role of proteins like BAX and BAK can potentially reduce SASP factors and age-related inflammation, suggesting new treatment approaches for conditions like Metabolic Dysfunction Associated Steatohepatitis (MASH).
View Article and Find Full Text PDF

BBB dysfunction during aging is characterized by an increase in its permeability and phenotypic alterations of brain endothelial cells (BECs) including dysregulation of tight junction's expression. Here we have investigated the role of BEC senescence in the dysfunction of the BBB. Our results suggest that the transition from young to aged BBB is mediated, at least in part by BEC senescence.

View Article and Find Full Text PDF
Article Synopsis
  • * New research tools are helping scientists study senescence more effectively, but identifying senescent cells remains challenging because of a lack of clear markers.
  • * The "minimum information for cellular senescence experimentation in vivo" (MICSE) guidelines offer a comprehensive resource on senescence markers in different organisms and types of tissues to enhance the study of senescent cells.
View Article and Find Full Text PDF
Article Synopsis
  • Cellular senescence, once thought to only occur in tissue cultures, is now recognized as playing complex roles in various biological processes across multiple species, including humans.
  • Traditional understanding of senescent cells primarily comes from lab studies, but these cells are rare in actual tissues, and fully developed cells can also show signs of senescence.
  • The SenNet Biomarkers Working Group has created recommendations for identifying senescent cells in tissues, analyzing literature on markers in mice and humans, and discussing new methods for detection that will assist researchers in the field.
View Article and Find Full Text PDF

Senescent cells drive age-related tissue dysfunction via the induction of a chronic senescenceassociated secretory phenotype (SASP). The cyclin-dependent kinase inhibitors p21 and p16 have long served as markers of cellular senescence. However, their individual roles remain incompletely elucidated.

View Article and Find Full Text PDF

Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP). Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence.

View Article and Find Full Text PDF

Cellular senescence is a pivotal factor contributing to aging and the pathophysiology of age-related diseases. Despite the presence of inflammation and abnormal immune system function in both inflammatory bowel diseases (IBD) and senescence, the relationship between the two remains largely unexplored. Therefore, our study aimed to investigate the intricate connection between cellular senescence, telomeres, and IBD.

View Article and Find Full Text PDF

Cellular senescence and biliary fibrosis are prototypical features of obliterative cholangiopathies, such as primary sclerosing cholangitis (PSC). Telomere dysfunction can lead to senescence either through telomere erosion or damaged telomeres. Our goal was to investigate a mechanistic relationship between telomere damage and biliary fibrosis in PSC.

View Article and Find Full Text PDF

Cellular senescence may be associated with morphological changes in skeletal muscle and changes in physical function with age although there have been few human studies. We aimed to determine the feasibility of characterising cellular senescence in skeletal muscle and explored sex-specific associations between markers of cellular senescence, muscle morphology, and physical function in participants from the MASS_Lifecourse Study. Senescence markers (p16, TAF (Telomere-Associated DNA Damage Foci), HMGB1 (High Mobility Group Box 1), and Lamin B1) and morphological characteristics (fibre size, number, fibrosis, and centrally nucleated fibres) were assessed in muscle biopsies from 40 men and women (age range 47-84) using spatially-resolved methods (immunohistochemistry, immunofluorescence, and RNA and fluorescence in situ hybridisation).

View Article and Find Full Text PDF

Cellular senescence is a well-established driver of aging and age-related diseases. There are many challenges to mapping senescent cells in tissues such as the absence of specific markers and their relatively low abundance and vast heterogeneity. Single-cell technologies have allowed unprecedented characterization of senescence; however, many methodologies fail to provide spatial insights.

View Article and Find Full Text PDF

Wound healing is an essential physiological process for restoring normal skin structure and function post-injury. The role of cellular senescence, an essentially irreversible cell cycle state in response to damaging stimuli, has emerged as a critical mechanism in wound remodeling. Transiently-induced senescence during tissue remodeling has been shown to be beneficial in the acute wound healing phase.

View Article and Find Full Text PDF
Article Synopsis
  • Some old cells in our body, called senescent cells, can cause health problems as we age, like bone loss.
  • Scientists created a special mouse model to study the effects of removing these old cells from specific places (local) versus the whole body (systemic).
  • They found that removing old bone cells helped prevent bone loss in some areas, but removing them from the whole body worked better and had more benefits for keeping bones healthy as we age.
View Article and Find Full Text PDF

Patients with cholestatic liver disease, including those with primary biliary cholangitis, can experience symptoms of impaired cognition or brain fog. This phenomenon remains unexplained and is currently untreatable. Bile duct ligation (BDL) is an established rodent model of cholestasis.

View Article and Find Full Text PDF

Cellular senescence is a plausible mediator of inflammation-related tissue dysfunction. In the aged brain, senescent cell identities and the mechanisms by which they exert adverse influence are unclear. Here we used high-dimensional molecular profiling, coupled with mechanistic experiments, to study the properties of senescent cells in the aged mouse brain.

View Article and Find Full Text PDF

Senescence is a cell fate that contributes to multiple aging-related pathologies. Despite profound age-associated changes in skeletal muscle (SkM), whether its constituent cells are prone to senesce has not been methodically examined. Herein, using single cell and bulk RNA-sequencing and complementary imaging methods on SkM of young and old mice, we demonstrate that a subpopulation of old fibroadipogenic progenitors highly expresses together with multiple senescence-related genes and, concomitantly, exhibits DNA damage and chromatin reorganization.

View Article and Find Full Text PDF

Although cellular senescence drives multiple age-related co-morbidities through the senescence-associated secretory phenotype, in vivo senescent cell identification remains challenging. Here, we generate a gene set (SenMayo) and validate its enrichment in bone biopsies from two aged human cohorts. We further demonstrate reductions in SenMayo in bone following genetic clearance of senescent cells in mice and in adipose tissue from humans following pharmacological senescent cell clearance.

View Article and Find Full Text PDF

Cancer survivors suffer from progressive frailty, multimorbidity, and premature morbidity. We hypothesise that therapy-induced senescence and senescence progression via bystander effects are significant causes of this premature ageing phenotype. Accordingly, the study addresses the question whether a short anti-senescence intervention is able to block progression of radiation-induced frailty and disability in a pre-clinical setting.

View Article and Find Full Text PDF

Background: α-Klotho is a geroprotective protein that can attenuate or alleviate deleterious changes with ageing and disease. Declines in α-Klotho play a role in the pathophysiology of multiple diseases and age-related phenotypes. Pre-clinical evidence suggests that boosting α-Klotho holds therapeutic potential.

View Article and Find Full Text PDF

Ageing organisms accumulate senescent cells that are thought to contribute to body dysfunction. Telomere shortening and damage are recognized causes of cellular senescence and ageing. Several human conditions associated with normal ageing are precipitated by accelerated telomere dysfunction.

View Article and Find Full Text PDF