Senile plaques, mainly composed of amyloid-β (Aβ), are a major hallmark of Alzheimer disease (AD), and immunotherapy is a leading therapeutic approach for Aβ clearance. Although the ultimate mechanisms for Aβ clearance are not well known, characteristic microglia clusters are observed in the surround of senile plaques, and are implicated both in the elimination of Aβ as well as the deleterious inflammatory effects observed in AD patients after active immunization. Therefore, analyzing the direct effect of immunotherapy on microglia, using longitudinal in vivo multiphoton microscopy can provide important information regarding the role of microglia in immunotherapy.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common progressive neurodegenerative disorder causing dementia. Massive deposition of amyloid β peptide (Aβ) as senile plaques in the brain is the pathological hallmark of AD, but oligomeric, soluble forms of Aβ have been implicated as the synaptotoxic component. The apolipoprotein E ε 4 (apoE ε4) allele is known to be a genetic risk factor for developing AD.
View Article and Find Full Text PDF