Publications by authors named "Diana Gulei"

Receptor tyrosine kinases (RTKs) are key cell surface receptors involved in cell communication and signal transduction, with great importance in cell growth, differentiation, survival, and metabolism. Dysregulation of RTKs, such as EGFR, VEGFR, HER2 or ROR, could lead to various diseases, particularly cancers. ROR1 has emerged as a promising target in hematological malignancies.

View Article and Find Full Text PDF

Background And Aims: Non-small cell lung cancer (NSCLC) treatment is challenged by late detection and limited therapeutic options. Aberrant DNA methylation, a common epigenetic alteration in NSCLC, offers new therapeutic avenues. This study aims to evaluate the combined effects of 5-Azacytidine (5-Aza), an epigenetic modifier, and ionizing radiation (IR) on NSCLC, exploring the underlying molecular mechanisms and therapeutic potential.

View Article and Find Full Text PDF
Article Synopsis
  • * Treatment with hypomethylating agents like azacytidine is common, but patient responses vary, necessitating better understanding through genetic and epigenetic analysis, particularly RNA methylation.
  • * Recent research focused on RNA methylation in MDS patients to determine factors that distinguish responders from non-responders to azacytidine, suggesting that analyzing the methylome can provide more accurate prognostic insights for high-grade MDS patients.
View Article and Find Full Text PDF

Background And Aims: This study explores the impact of emotional health on cancer patients, acknowledging the controversies and lack of high-quality data in the field, particularly for rare cancers and younger patients. It highlights the significant prevalence of depression and anxiety among cancer patients, the inadequacies in addressing mental health during and after treatment, and the inconsistencies in prevalence rates due to varying study methodologies. This study unravels the importance of data regarding mental health status in a clinical dataset to accompany the biological sample to be included in a biobank.

View Article and Find Full Text PDF
Article Synopsis
  • * RTKs are often dysregulated in various cancer types, making them key targets for new treatments, particularly small molecule tyrosine kinase inhibitors (TKIs).
  • * This text aims to provide a detailed overview of how RTKs contribute to cancer and discusses the effectiveness of current RTK inhibitors as targeted therapies.
View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a malignancy in the myeloid lineage that is characterized by symptoms like fatigue, bleeding, infections, or anemia, and it can be fatal if untreated. In AML, mutations in tyrosine kinases (TKs) lead to enhanced tumor cell survival. The most frequent mutations in TKs are reported in -like tyrosine kinase 3 (FLT3), Janus kinase 2 (JAK2), and KIT (tyrosine-protein kinase KIT), making these TKs potential targets for TK inhibitor (TKI) therapies in AML.

View Article and Find Full Text PDF

Lung cancer, primarily non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC), is distinguished by its high prevalence and marked mortality rates. Traditional therapeutic approaches, encompassing chemotherapy, radiation, and targeted therapies, frequently show limited efficacy due to acquired resistance and notable side effects. The objective of this review is to introduce a fresh perspective on the therapeutic strategies for lung cancer, emphasizing interventions targeting the epigenetic alterations often seen in this malignancy.

View Article and Find Full Text PDF

Strategies to improve hematopoietic stem and progenitor cell (HSPC) mobilization from the bone marrow can have a pivotal role in addressing iatrogenic bone-marrow insufficiency from chemo(radio)therapy and overcoming peripheral blood stem cell transplantation (PBSCT) limitations such as insufficient mobilization. Granulocyte-colony stimulating factor (G-CSF) represents the standard mobilization strategy for HSPC and has done so for more than three decades since its FDA approval. Its association with non-G-CSF agents is often employed for difficult HSPC mobilization.

View Article and Find Full Text PDF

Apoptosis, the most extensively studied type of cell death, is known to play a crucial role in numerous processes such as elimination of unwanted cells or cellular debris, growth, control of the immune system, and prevention of malignancies. Defective regulation of apoptosis can trigger various diseases and disorders including cancer, neurological conditions, autoimmune diseases and developmental disorders. Knowing the nuances of the cell death type induced by a compound can help decipher which therapy is more effective for specific diseases.

View Article and Find Full Text PDF

Acute megakaryoblastic leukaemia (AMkL) is a rare subtype of acute myeloid leukaemia (AML) representing 5% of all reported cases, and frequently diagnosed in children with Down syndrome. Patients diagnosed with AMkL have low overall survival and have poor outcome to treatment, thus novel therapies such as CAR T cell therapy could represent an alternative in treating AMkL. We investigated the effect of a new CAR T cell which targets CD41, a specific surface antigen for M7-AMkL, against an in vitro model for AMkL, DAMI Luc2 cell line.

View Article and Find Full Text PDF
Article Synopsis
  • Acquired haemophilia (AH) is a rare bleeding disorder caused by the immune system producing autoantibodies that attack clotting factor VIII, even in patients with no previous history of clotting issues.
  • A study compared small RNAs collected from patients with AH, classical haemophilia, and healthy donors using advanced sequencing technology, leading to the identification of significant transcript changes.
  • The research highlighted that the hemoglobin subunit alpha 1 was the only significantly upregulated transcript in AH patients, but larger studies are needed to confirm these findings and explore the role of non-coding RNAs in the disease's development.
View Article and Find Full Text PDF

Multiple myeloma (MM) is a malignant plasma cell disorder accounting for around 1.8% of all neoplastic diseases. Nowadays, clinicians have a broad arsenal of drugs at their disposal for the treatment of MM, such as proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, bispecific antibodies, CAR T-cell therapies and antibody-drug conjugates.

View Article and Find Full Text PDF

Introduction: Emerging immunotherapies are pushing the boundaries of cancer treatment, with chimeric antigen receptor (CAR)-T cell therapy being one of the most advanced. Due to the increasingly crowded CAR-T cell field, patenting and protecting the intellectual property of these CAR-T cells implies a good knowledge of the legal landscape.

Areas Covered: The present manuscript focuses on the challenges regarding the patenting process of CAR-T technology, beginning with a description of the main characteristics of CAR-T cells and their functionalities, continuing with the legal landscape applicable to patenting processes, and concluding by presenting the potential strategies to overcome the impediments that can appear when trying to patent CAR-T cells.

View Article and Find Full Text PDF

The human microbiome represents the diversity of microorganisms that live together at different organ sites, influencing various physiological processes and leading to pathological conditions, even carcinogenesis, in case of a chronic imbalance. Additionally, the link between organ-specific microbiota and cancer has attracted the interest of numerous studies and projects. In this review article, we address the important aspects regarding the role of gut, prostate, urinary and reproductive system, skin, and oral cavity colonizing microorganisms in prostate cancer development.

View Article and Find Full Text PDF

The ubiquitin-proteasome system (UPS) is responsible for up to 90% of intracellular protein degradation. Alterations in UPS are extensively involved in the development and advancement of malignant pathologies. Thus, the components of the UPS can become potential targets for cancer therapeutics.

View Article and Find Full Text PDF

The full understanding of the complex nature of cancer still faces many challenges, as cancers arise not as a result of a single target disruption but rather involving successive genetic and epigenetic alterations leading to multiple altered metabolic pathways. In this light, the need for a multitargeted, safe and effective therapy becomes essential. Substantial experimental evidence upholds the potential of plant-derived compounds to interfere in several important pathways, such as tumor glycolysis and the upstream regulating mechanisms of hypoxia.

View Article and Find Full Text PDF

It is possible to obtain diagnostically relevant data on the changes in biochemical elements brought on by cancer via the use of multivariate analysis of vibrational spectra recorded on biological fluids. Prostate cancer and control groups included in this research generated almost similar SERS spectra, which means that the values of peak intensities present in SERS spectra can only give unspecific and limited information for distinguishing between the two groups. Our diagnostic algorithm for prostate cancer (PCa) differentiation was built using principal component analysis and linear discriminant analysis (PCA-LDA) analysis of spectral data, which has been widely used in spectral data management in many studies and has shown promising results so far.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a plasma cell malignancy that affects an increasing number of patients worldwide. Despite all the efforts to understand its pathogenesis and develop new treatment modalities, MM remains an incurable disease. Novel immunotherapies, such as CAR T cell therapy (CAR) and bispecific T cell engagers (BiTE), are intensively targeting different surface antigens, such as BMCA, SLAMF7 (CS1), GPRC5D, FCRH5 or CD38.

View Article and Find Full Text PDF

The ubiquitin-proteasome system is the crucial homeostatic mechanism responsible for the degradation and turnover of proteins. As such, alterations at this level are often associated with oncogenic processes, either through accumulation of undegraded pathway effectors or, conversely, excessive degradation of tumor-suppressing factors. Therefore, investigation of the ubiquitin- proteasome system has gained much attraction in recent years, especially in the context of hematological malignancies, giving rise to efficient therapeutics such as bortezomib for multiple myeloma.

View Article and Find Full Text PDF

Over the last decades, cancer has become one of the most relevant health issues at a worldwide level [...

View Article and Find Full Text PDF

Patients with relapsed/refractory acute myeloid leukaemia (AML), ineligible for intensive chemotherapy and allogeneic stem cell transplantation, have a dismal prognosis. For such cases, hypomethylating agents are a viable alternative, but with limited success. Combination chemotherapy using a hypomethylating agent plus another drug would potentially bring forward new alternatives.

View Article and Find Full Text PDF

Colon cancer is the third most common cancer type worldwide and is highly dependent on DNA mutations that progressively appear and accumulate in the normal colon epithelium. Mutations in the gene appear in approximately half of these patients and have significant implications in disease progression and response to therapy. miR-125b-5p is a controversial microRNA with a dual role in cancer that has been reported to target specifically in colon adenocarcinomas.

View Article and Find Full Text PDF

Hemophilia type A (HA) is the most common type of blood coagulation disorder. While the vast majority of cases are inherited and caused by mutations in the gene, recent data raises new questions regarding the non-heritability of this disease, as well as how other molecular mechanisms might lead to the development of HA or increase the severity of the disease. Some data suggest that miRNAs may affect the severity of HA, but for some patients, miRNA-based interference might cause HA, in the absence of an mutation.

View Article and Find Full Text PDF