Acute stroke treatment is a time-critical process in which every minute counts. Laboratory biomarkers are needed to aid clinical decisions in the diagnosis. Although imaging is critical for this process, these biomarkers may provide additional information to distinguish actual stroke from its mimics and monitor patient condition and the effect of potential neuroprotective strategies.
View Article and Find Full Text PDFBackground: Stroke continues to be a leading cause of mortality and morbidity worldwide, and novel therapeutic options for ischaemic stroke are urgently needed. In this context, drug combination therapies seem to be a viable approach, which has not been fully explored in preclinical studies.
Objectives: In this work, we assessed the dose-response relationship and therapeutic time window, in global brain ischaemia, of a combined therapeutic approach of recombinant human epidermal growth factor (EGF) and growth hormone-releasing peptide-6 (GHRP-6).
The Mongolian gerbil has been widely used as a global brain ischemia model because of its incomplete cerebral circle of Willis. However, the inter-individual anatomic variability of this vascular structure interferes with the reliability of the model. The aim of this work was to introduce modifications to the protocol of global brain ischemia experiments in Mongolian gerbils in an attempt to increase the reliability and usefulness of this model.
View Article and Find Full Text PDFAcute stroke is one of the major causes of death and disabilities. Since the 1980s many clinical studies have been conducted to evaluate neuroprotective approaches to treat this important brain vascular event. However, to date the only drug approved (recombinant tissue plasminogen activator [rtPA]) represents a thrombolytic, nonneuroprotective approach.
View Article and Find Full Text PDFPurpose: Multiple sclerosis is a complex and devastating autoimmune disease of the central nervous system. Up to now, a constellation of candidate drugs have been evaluated with no major success. Experimental Autoimmune Encephalitis (EAE) is the animal counterpart that reproduces critical features of the human MS process.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a disease of the central nervous system characterized by loss of spinal motor neurons, for which no effective treatment exists. Epidermal growth factor (EGF) and growth hormone releasing peptide-6 (GHRP-6) have been considered as good candidates for the treatment of this disease, due to their well documented effects in eliciting pleiotrophic and cell survival mechanisms. The aim of the present work was to evaluate the separate and combined effects of both peptides in an experimental animal model of ALS, the proximal axonopathy induced by 1,2 diacetylbenzene (1,2 DAB) in mice.
View Article and Find Full Text PDFLower extremity ulceration is one of the serious and long-term diabetic complications rendering a significant social burden in terms of amputation and quality-of-life reduction. Diabetic patients experience a substantial wound-healing deficit. These lesions are featured by an exaggerated and prolonged inflammatory reaction with a significant impairment in local bacterial invasion control.
View Article and Find Full Text PDFIn most tissues, the immune system plays an essential role in protection, repair and healing. Although immunologically privileged, the CNS remains subject to a highly regulated form of immunosurveillance that is of increasing interest. There is evolving evidence that repair mechanisms within the CNS may be enhanced by exploiting an innate process of protective immunity.
View Article and Find Full Text PDFNovel therapies for the treatment of MOF (multiple organ failure) are required. In the present study, we examined the effect of synthetic GHRP-6 (growth hormone-releasing peptide-6) on cell migration and proliferation using rat intestinal epithelial (IEC-6) and human colonic cancer (HT29) cells as in vitro models of injury. In addition, we examined its efficacy when given alone and in combination with the potent protective factor EGF (epidermal growth factor) in an in vivo model of MOF (using two hepatic vessel ischaemia/reperfusion protocols; 45 min of ischaemia and 45 min of reperfusion or 90 min of ischaemia and 120 min of reperfusion).
View Article and Find Full Text PDF